T-79.5201 Discrete Structures, Autumn 2007

Home assignment 3 (due 19 Dec at 4:00 p.m.)

1. In the bin-packing problem, we are given a set of items with sizes a_{1}, \ldots, a_{n}, with $0 \leq a_{i} \leq 1$ for $i=1, \ldots, n$. The goal is to pack the items in a minimum number of bins, each with a total capacity of 1 unit. Let each of the a_{i} be chosen independently at random according to some distribution, which might be different for different i. Let X be the minimum number of bins required in the best packing of the resulting set of items, and $\mu=E[X]$ the expected number of bins in the best packing. For a given $\lambda>0$, derive a bound on the probability $\operatorname{Pr}(|X-\mu|>\lambda)$.
2. [Baranyai's Rounding Lemma.] Let $A=\left(a_{i j}\right)$ be a matrix of real elements. Prove that there exists an integer matrix $\hat{A}=\left(\hat{a}_{i j}\right)$ satisfying $\left|a_{i j}-\hat{a}_{i j}\right|<1$ for all i, j, such that:

$$
\begin{aligned}
& \left|\sum_{j} a_{i j}-\sum_{j} \hat{a}_{i j}\right|<5 \text { for all } i, \\
& \left|\sum_{i} a_{i j}-\sum_{i} \hat{a}_{i j}\right|<5 \text { for all } j, \text { and } \\
& \left|\sum_{i} \sum_{j} a_{i j}-\sum_{i} \sum_{j} \hat{a}_{i j}\right|<5 .
\end{aligned}
$$

(In Baranyai's 1974 result, the constant 5 is replaced by 1.)
3. By the result of Problem 2(a) in Home Assignment 1, for any k-cnf formula F there is a truth assignment to the variables of F that satisfies at least a fraction $\left(1-2^{-k}\right)$ of its clauses. Design an efficient algorithm that, given such a formula, actually finds the promised assignment.
4. [Alon \& Spencer, Prob. 15.3:] Prove that if $\mathcal{F}=\left\{S_{1}, \ldots, S_{m}\right\}$ is a hypergraph on n vertices satisfying $\sum_{i=1}^{m} 2^{1-\left|S_{i}\right|}<1$, then \mathcal{F} is two-colourable. In the case $m=n$ design an efficient algorithm that, given \mathcal{F}, determines an appropriate two-colouring of the vertices that leaves no $S_{i} \in \mathcal{F}$ monochromatic.

