T-79.5201 Discrete Structures, Autumn 2007

Home assignment 2 (due 5 Dec at 12:15 p.m.)

1. Prove that the graph property " G contains a d-dimensional cube" has a threshold function for $d \geq 1$, and compute it. (The " d-dimensional cube" has 2^{d} vertices represented as $\{0,1\}^{d}$, and two vertices are connected by an edge if and only if their representations differ in exactly one position.)
2. Show that for $p(n)=(1-\epsilon)(\ln n) / n, 0<\epsilon \leq 1$, almost every $G \in \mathcal{G}(n, p)$ contains an isolated vertex.
3. Let F be a Boolean formula in k-conjunctive normal form, i.e. such that each clause of F contains exactly k literals. Assume that each variable appears (negated or not) in at most r clauses of F, where $r \leq 2^{k-2} / k$. Prove that then there is a truth assignment to the variables that satisfies all the clauses. (Hint: Lovász Local Lemma.)
4. Let $n \geq 1$, and let μ and ν be probability distributions on $\Omega=\mathcal{P}([n])$ such that for all $A, B \subseteq[n], \mu(A) \nu(B) \leq \mu(A \cup B) \nu(A \cap B)$. Show that for any increasing function $h: \Omega \rightarrow \mathbf{R}^{+}$,

$$
\sum_{A \in \Omega} \mu(A) h(A) \geq \sum_{A \in \Omega} \nu(A) h(A) .
$$

Observe, as a corollary, that under these conditions for any monotone increasing event $\mathcal{A} \subseteq \Omega, \operatorname{Pr}_{\mu}(\mathcal{A}) \geq \operatorname{Pr}_{\nu}(\mathcal{A})$.

