T-79.5201 Discrete Structures, Autumn 2007

Home assignment 1 (due 7 Nov at 12:15 p.m.)

1. Consider the family of all pairs (A, B) of disjoint k-element subsets of $[n]=\{1, \ldots, n\}$. A set $Y \subseteq[n]$ separates the pair (A, B) if $A \subseteq Y$ and $B \cap Y=\emptyset$. Show that there exists a family of $\ell=3 k 4^{k} \ln n$ sets such that every pair (A, B) is separated by at least one of them. (Hint: Consider a uniform random family of ℓ subsets of $[n]$. Estimate the probability that none of them separates a given pair (A, B).)
2. Let F be a Boolean formula in conjunctive normal form, with n variables and m clauses. ${ }^{1}$
(a) Let k be the minimum number of literals in any of the clauses in F. Show that there is a truth assignment to the variables of F that satisfies at least $\left(1-2^{-k}\right) m$ of the clauses. (Hint: Linearity of expectation.)
(b) Formula F is 2-satisfiable if any two of its clauses can be simultaneously satisfied. Show that in this case there is a truth assignment to the variables that satisfies at least γm of the clauses, where $\gamma=(\sqrt{5}-1) / 2$. (Hint: Consider a random truth assignment to the variables, biased so that if a literal $x^{ \pm}$appears as a unary clause in F then $\operatorname{Pr}\left(x^{ \pm}=1\right)=\gamma$, otherwise $\operatorname{Pr}\left(x^{ \pm}=1\right)=1 / 2$.)
3. Consider the space Ω_{n} of random equiprobable permutations of $[n]=\{1, \ldots, n\}$. A permutation $\pi \in \Omega_{n}$ contains an increasing subsequence of length k, if there are indices $i_{1}<\cdots<i_{k}$ such that $\pi\left(i_{1}\right)<\cdots<\pi\left(i_{k}\right)$.
(a) Show that a.a.s. a random permutation $\pi \in \Omega_{n}$ does not contain an increasing subsequence of length $\geq e \sqrt{n}$. (Hint: First-moment method.)
(b) Denote the length of a maximal increasing subsequence contained in a permutation π by $I(\pi)$, and correspondingly the length of a maximal decreasing subsequence by $D(\pi)$. Erdős and Szekeres proved in 1935 that $I(\pi) D(\pi) \geq n$ for any permutation π of $[n] .{ }^{2}$ Deduce from this result and the result of part (a) that a.a.s. a random permutation $\pi \in \Omega_{n}$ contains an increasing subsequence of length $\geq \sqrt{n} / e$.
4. [Zarankiewicz's Problem.] Let $k_{a}(n)$ be the minimal k such that all $n \times n 0-1$ matrices containing more than k ones contain an $a \times a$ submatrix consisting entirely of ones (an "all-ones" submatrix). It is known that for all n and a,

$$
k_{a}(n) \leq(a-1)^{1 / a} n^{2-1 / a}+(a-1) n .
$$

Establish a corresponding lower bound: for every constant $a \geq 2$ there is an $\epsilon>0$ such that $k_{a}(n) \geq \epsilon n^{2-2 / a}$. (Hint: Alteration method. Take a random $n \times n 0-1$ matrix A, where each entry has probability $p=n^{-2 / a}$ of being 1 . Associate with each $a \times a$ submatrix e of A an indicator variable $Y_{e} \sim$ " e is an all-ones submatrix". Kill all all-ones submatrices by switching one entry in each to 0 .)

[^0]
[^0]: ${ }^{1}$ If you are not familiar with these notions, please ask the lecturer and/or your colleagues.
 ${ }^{2}$ You do not need to prove this claim, but in fact it has a very simple and elegant proof; think about it or look it up in any combinatorics textbook under "Ramsey theory."

