T-79.5201 Discrete Structures, Autumn 2006

Tutorial 9, 13 December

1. Use Darboux's lemma (Theorems $7.2 \& 7.3$ in the lecture notes) to estimate the coefficients of the following generating functions:
(a) $f(z)=e^{-z / 2} \sqrt{1-z}$,
(b) $f(z)=e^{-z+z^{2} / 2} \sqrt{1-z^{2}}$.
2. The exponential generating function for the class of involutions is $\hat{t}(z)=e^{z+z^{2} / 2}$. (Cf. e.g. p. 28 of the lecture notes.) Use this fact to estimate the number t_{n} of involutions of n elements.
3. The exponential generating function of the Bell numbers, i.e. the numbers of partitions b_{n} of n-element sets is $\hat{b}(z)=\exp \left(e^{z}-1\right)$. (Cf. e.g. tutorial 3 problem 2 , or p. 25 of the lecture notes.) Use this fact to estimate the size of the numbers b_{n}.

In case you want to investigate the quality of your estimates in problems 2 and 3, you can easily obtain initial segments of the respective sequences from the "Online Encyclopedia of Integer Sequences" server, http://www.research.att.com/~njas/sequences/. Alternatively, you can determine the recurrence formulas for computing the exact values by applying the " $z D \log$ trick" to the egf's given in the problems, or recall them from previous exercises.

