## T-79.5201 Discrete Structures, Autumn 2006

Tutorial 8, 29 November

1. As is well known, the ordinary generating function of the Fibonacci numbers is $f(z)=z /\left(1-z-z^{2}\right)$. Derive from this fact an estimate for the size of the Fibonacci numbers $f_{n}, n \geq 0$, based on information about the poles of the function $f(z)$.
2. The exponential generating function of the Bernoulli numbers is $\hat{b}(z)=z /\left(e^{z}-1\right)$. Derive from this fact an estimate for the size of the numbers $b_{n}$. How precise can you make your estimate?
3. Theorem 7.1 of the lecture notes, concerned with estimating the coefficients of meromorphic generating functions, claims that if function $f(z)=\sum_{n \geq 0} f_{n} z^{n}$ has a pole of order $m$ at $z_{0} \neq 0$, then its contribution to the coefficient $f_{n}^{\prime}$ is

$$
-\operatorname{Res}_{z=z_{0}} \frac{f(z)}{z^{n+1}}=\left(\frac{1}{z_{0}}\right)^{n} \cdot P(n),
$$

where $P(n)$ is a polynomial of degree $m-1$. Prove this claim (i.e. the fact that the residue is of the required form) when (a) $m=1$, (b) $m \geq 1$. In the case $m=1$ verify also the explicit formula given for the polynomial (which in this case is just a constant), $P=-\operatorname{Res}\left(f ; z_{0}\right) / z_{0}$. (Hint: If you wish, you can follow the derivation given in H. Wilf's book generatingfunctionology, page 174.)

