T-79.5201 Discrete Structures, Autumn 2006

Tutorial 6, 15 November

1. It has been previously established that the egf for the class of derangements is $\hat{d}(z)=e^{-z} /(1-z)$. Derive from this a simple recurrence equation for the number of derangements of n elements. Can you think of a combinatorial interpretation for this formula?
2. Let $h(z)=\sum_{n \geq m} h_{n} z^{n}$, where $h_{m} \neq 0$, be a formal Laurent series. Prove the following results:
(a) $\operatorname{Res}\left(h^{\prime}(z)\right)=0$;
(b) $\operatorname{Res}\left(h^{\prime}(z) / h(z)\right)=m$.
3. Derive from Lagrange's inversion formula for formal power series (Theorem 5.2 in the lecture notes) its following reformulation (useful e.g. in the analysis of tree structures): Let $f(z)$ and $\phi(u)$ be formal power series satisfying $\phi(0)=\phi_{0} \neq 0$ and $f(z)=z \phi(f(z))$. Then for all $n \geq 1$:

$$
\left[z^{n}\right] f(z)=\frac{1}{n}\left[u^{n-1}\right] \phi(u)^{n} .
$$

(Hint: Consider the power series $\psi(u)=\frac{u}{\phi(u)}$.)
4. Derive formulas for the number of n-node rooted ordered trees and n-node binary trees (rooted ordered trees where each node has 0,1 or 2 descendants) directly by applying the respective ogf-constructions and Lagrange's inversion formula.

