T-79.5201 Discrete Structures, Autumn 2006

Tutorial 3, 11 October

1. Prove that if $a=\left\langle a_{n}\right\rangle, b=\left\langle b_{n}\right\rangle$ and $c=\left\langle c_{n}\right\rangle$ are sequences (of complex numbers) satisfying $c_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n-k}$, then their exponential generating functions satisfy $\hat{c}(z)=\hat{a}(z) \hat{b}(z)$.
2. The Bell number b_{n} indicates how many different partitions (equivalence relations) can be constructed on a set of n elements. (In terms of Stirling numbers of the $2^{\text {nd }}$ kind one could thus write $b_{n}=\sum_{k=1}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\}$.) Show that the Bell numbers b_{n} satisfy the recurrence

$$
b_{n+1}=\sum_{k=0}^{n}\binom{n}{k} b_{k}, \quad b_{0}=1,
$$

and derive from this the exponential generating function $\hat{b}(z)$ for the sequence $b=\left\langle b_{n}\right\rangle$. (Hint: Differentiate the series defining the sequence's egf and solve the resulting differential equation.)
3. Let $\mathcal{A}=\left(A, w_{A}\right)$ and $\mathcal{B}=\left(B, w_{B}\right)$ be two weighted families of combinatorial structures. Construct their product $\mathcal{A} \times \mathcal{B}=\left(C, w_{C}\right)$ by defining on the ambient set $C=A \times B$ the weight function as $w_{C}((\alpha, \beta))=w_{A}(\alpha)+w_{B}(\beta)$. Prove that this product construction is ogf-admissible, i.e. that the ogf of the product family can be computed directly from the ogf's of the component families. (Hint: Look at the ogf sums as defined over the structures in each of the families, so. $\left.c(z)=\sum_{\sigma \in C} z^{w_{C}(\sigma)}=\cdots\right)$

