## T-79.5201 Discrete Structures, Autumn 2006

Tutorial 1, 27 September

1. Solve the following recurrence equations using the method of generating functions:
(a)

$$
\left\{\begin{array}{l}
a_{0}=0, \quad a_{1}=1, \\
a_{n}=5 a_{n-1}-6 a_{n-2}, \quad n \geq 2
\end{array}\right.
$$

(b)

$$
\left\{\begin{array}{l}
b_{0}=0, \quad b_{1}=1, \\
b_{n}=4 b_{n-1}-5 b_{n-2}, \quad n \geq 2
\end{array}\right.
$$

2. Let $\left\langle a_{k}\right\rangle=\left\langle a_{0}, a_{1}, a_{2}, \ldots\right\rangle$ be a sequence of real numbers, and $a(x)$ its real-valued generating function (i.e. the formal variable $x$ is here also considered to be realvalued). Assume that the power series $\sum_{k \geq 0} a_{k} x^{k}$ converges in some neighbourhood of the origin. Which real-number sequences are then represented by the functions $a^{\prime}(x)$ ja $\int_{0}^{x} a(t) d t$, defined in the same neighbourhood about the origin? Use these observations to determine the (real-valued) generating functions for the sequences $\langle 0,1,2, \ldots\rangle$ ja $\left\langle 1, \frac{1}{2}, \frac{1}{3}, \ldots\right\rangle$.
3. The Stirling number of the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ indicates in how many ways a set of $n$ elements can be partitioned into $k$ nonempty subsets. These numbers satisfy the recurrence equation

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}+k\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\} \quad \text { when }(n, k) \neq(0,0) ; \quad\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}=1
$$

Using this recurrence, construct the generating function $S_{k}(z)$ for the sequence $\left\langle s_{n}\right\rangle$, where $s_{n}=\left\{\begin{array}{l}n \\ k\end{array}\right\}$ (i.e. the sequence of Stirling numbers for a fixed value of $k)$. Derive furthermore from the function $S_{k}(z)$ some estimates on the rate of growth of the numbers $\left\{\begin{array}{l}n \\ k\end{array}\right\}$, as a function of $n$.

