T-79.5102 Special Course in Computational Logic Tutorial 10

1. The classical semantics of a propositional theory T is determined by $\operatorname{CM}(T) = \{M \subseteq \operatorname{Hb}(T) \mid M \models T\}$. The modularity of $\operatorname{CM}(\cdot)$ can be formalized as an equation

$$CM(T_1 \cup T_2) = CM(T_1) \bowtie CM(T_2) \tag{1}$$

where \bowtie combines any pair of interpretations $M_1 \subseteq \operatorname{Hb}(T_1)$ and $M_2 \subseteq \operatorname{Hb}(T_2)$ which are *compatible*, i.e., $M_1 \cap \operatorname{Hb}(T_2) = M_2 \cap \operatorname{Hb}(T_1)$, into $M_1 \cup M_2 \subseteq \operatorname{Hb}(T_1 \cup T_2)$.

- (a) Prove (1) for any propositional theories T_1 and T_2 .
- (b) Generalize (1) for any number of propositional theories T_1, \ldots, T_n .
- (c) Apply the generalized form of (1) to propositional theories

$$T_1 = \{r_1 \to r_2\}, T_2 = \{r_2 \to r_3\}, \dots, T_{n-1} = \{r_{n-1} \to r_n\},$$

and $T_n = \{r_n \to r_1\}$, i.e., to calculate $CM(T_1 \cup \ldots \cup T_n)$.

2. Consider the following smodels program modules:

- (a) For which pairs of modules are compositions and joins defined?
- (b) Apply the module theorem, i.e., the equation

$$\mathrm{SM}(\mathbb{P} \sqcup \mathbb{Q}) = \mathrm{SM}(\mathbb{P}) \bowtie \mathrm{SM}(\mathbb{Q}), \tag{2}$$

to some pair of modules \mathbb{P} and \mathbb{Q} for which $\mathbb{P} \sqcup \mathbb{Q}$ is defined.

- **3.** Prove the following algebraic properties of \oplus under the assumption that designated leftmost compositions are defined:
 - (a) $\mathbb{P} \oplus \emptyset = \emptyset \oplus \mathbb{P} = \mathbb{P}$ where \emptyset denotes an empty module $\langle \emptyset, \emptyset, \emptyset, \emptyset \rangle$.
 - (b) $\mathbb{P} \oplus \mathbb{Q} = \mathbb{Q} \oplus \mathbb{P}$.
 - (c) $(\mathbb{P} \oplus \mathbb{Q}) \oplus \mathbb{R} = \mathbb{P} \oplus (\mathbb{Q} \oplus \mathbb{R}).$

What if \oplus is replaced by \sqcup in the equations above?

4. Recall that $P = \{a \leftarrow b. \ a \leftarrow \sim b. \}$ and $Q = \{a.\}$ are not strongly equivalent. What about the modular equivalence of the respective program modules $\mathbb{P} = \langle P, \{b\}, \{a\}, \emptyset \rangle$ and $\mathbb{Q} = \langle Q, \{b\}, \{a\}, \emptyset \rangle$?