T-79.5102Special Course in Computational Logic **Tutorial** 7

- 1. Justify the following strategy for establishing the NP-completeness of a language L in terms of reductions.
 - 1. For membership, L is reduced to another NP-complete language L_1 .
 - 2. For hardness, an NP-complete language L_2 is reduced to L.

What can be said about the complexity of L if any of the objectives fails?

2. The classification of CAUTIOUS involved two reductions:

$$\langle P, a \rangle \notin \mathsf{CAUTIOUS} \iff R_1(P, a) = P \cup \{f \leftarrow a, \sim f.\} \in \mathsf{STABLE}$$

 $P \in \mathsf{STABLE} \iff R_2(P) = \langle P \cup \{f \leftarrow f.\}, f \rangle \notin \mathsf{CAUTIOUS}$

In both cases, the atom f introduced by the reduction is new, i.e., $f \notin$ Hb(P). Prove the correctness of the reductions R_1 and R_2 .

- 3. Analyze the computational time complexity of decision problems STABLE, BRAVE, and CAUTIOUS in the case of positive programs.
- 4. Given a normal program P, the transfinite iteration sequence of Γ_P^2 is defined for all ordinals α as follows:

 - $\begin{array}{ll} (\mathrm{i}) & \Gamma_P^2 \uparrow 0 = \emptyset. \\ (\mathrm{ii}) & \Gamma_P^2 \uparrow \alpha + 1 = \Gamma_P^2(\Gamma_P^2 \uparrow \alpha) \text{ for a successor ordinal } \alpha + 1. \\ (\mathrm{iii}) & \Gamma_P^2 \uparrow \alpha = \bigcup_{\beta < \alpha} \Gamma_P^2 \uparrow \beta \text{ for a limit ordinal } \alpha. \end{array}$

Prove in detail that $\Gamma_P^2 \uparrow \alpha \subseteq M \subseteq \Gamma_P(\Gamma_P^2 \uparrow \alpha)$ for any α and any stable model $M \in SM(P)$.

- 5. Determine SM(P) and WFM(P) for normal programs P consisting of
 - (a) $a \leftarrow \sim b$. $b \leftarrow \sim c$. $c \leftarrow \sim a$. (b) $a \leftarrow \sim b$. $b \leftarrow \sim c$. $b \leftarrow \sim d$. $c \leftarrow \sim a$. $e \leftarrow a$. $e \leftarrow \sim c$. $f \leftarrow \sim e$.
 - (c) $a \leftarrow \sim b$. $b \leftarrow \sim a$. $c \leftarrow a$, b. $d \leftarrow a$. $d \leftarrow b$. $e \leftarrow d$, $\sim c$.