Special Course in Computational Logic

Tutorial 4

1. Consider the following program involving choice, cardinality, and weight rules in addition to normal rules:
```
{Coffee, Tea, Cookie, Cake, Cognac}.
{Cream, Sugar} \leftarrow Coffee.
Cognac }\leftarrow\mathrm{ Coffee.
{Milk, Lemon, Sugar} }\leftarrow\mathrm{ Tea.
Mess }\leftarrow\mathrm{ Milk, Lemon.
Happy }\leftarrow1\mathrm{ {Cookie, Cake, Cognac}.
Broke \leftarrow6 [Coffee = 1, Tea = 1, Cookie = 1, Cake = 2, Cognac = 4].
OK }\leftarrow Happy,~Broke, ~Mess
~OK.
```

(a) Verify that $M=\{$ OK, Happy, Lemon, Tea, Biscuit $\}$ is a stable model of the program by

- reducing the program with respect to M and
- computing the least model for the reduct.
(b) Find out another model for the program and verify it.
(c) Find out the exact number of stable models using smodels.

2. Translate a cardinality rule

$$
a \leftarrow(n+m-1)\left\{b_{1}, \ldots, b_{n}, \sim c_{1}, \ldots, \sim c_{m}\right\} .
$$

where $n+m \geq 1$ back to normal rules.
3. Consider the problem of designing a round-robin tournament of n teams where each team plays the other team exactly once.
This implies that $\frac{n \times(n-1)}{2}$ matches are organized in total and the tournament lasts $n-1$ weeks when scheduled for $\frac{n}{2}$ fields.
(a) Write a cardinality constraint program (in the input language of lparse) to schedule tournaments of this kind.
(b) What is the number of solutions when $n=4$? Is there a good explanation for this number? Can you estimate/calculate the number solutions when $n=10$?
(c) What is the effect of assuming that matches organized each week take place simultaneously?
(d) Study how $|\operatorname{Gnd}(P)|$ and $|\operatorname{Hb}(\operatorname{Gnd}(P))|$ change as n grows.

