1. Determine the least model for the following positive program P :

$$
\begin{array}{ll}
p_{1} \leftarrow q_{1} . & r . \\
q_{1} \leftarrow p_{1} . & s_{1} \leftarrow p_{1}, q_{1} . \\
p_{2} \leftarrow q_{2} . & s_{2} \leftarrow p_{2}, q_{2} \\
q_{2} \leftarrow p_{2} . & q_{1} \leftarrow r .
\end{array}
$$

Which atoms of $\mathrm{Hb}(P)$ are logical consequences of P ? Provide a counter model for one of the atoms which is not a logical consequence of P.
2. Consider the positive program P consisting of three rules

$$
Q(f(x)) \leftarrow Q(x), R(g(x)) . \quad R(g(x)) \leftarrow R(x) . \quad R(a) .
$$

involving variables. What is the least Herbrand model of P ?
3. Consider the following positive program P :

$$
\begin{aligned}
& D(x) \leftarrow A(x), \quad B(x) . \quad E(x, y) \leftarrow D(x), D(y) . \\
& A(1) . \quad A(2) . \quad B(2) . \\
& B(3) . \quad C(4) .
\end{aligned}
$$

(a) Form the ground program $\operatorname{Gnd}(P)$.
(b) Calculate the unique answer set $\mathrm{LM}(\operatorname{Gnd}(P))$ of P.
(c) Use it to determine answer substitutions for the query $\exists x E(2, x)$.
(d) Find the least subset $Q \subseteq \operatorname{Gnd}(P)$ for which

$$
\operatorname{LM}(Q)=\operatorname{LM}(\operatorname{Gnd}(P))
$$

holds, i.e., the rules in $\operatorname{Gnd}(P) \backslash Q$ can be deemed redundant.
(e) Use the smodels system to compute $\operatorname{LM}(\operatorname{Gnd}(P))$. Does the output of lparse differ much from Q ?

