T-79.5102 Special Course in Computational Logic Tutorial 1

1. Consider the following propositional theory

 $T_n = \{r_1 \to r_2, r_2 \to r_3, \dots, r_{n-1} \to r_n, r_n \to r_1\}$

based on $\mathcal{P}_n = \{r_1, \ldots, r_n\}$ where n > 0. The intuitive reading of r_i is that the *i*th node is *reachable* in a finite ring of *n* nodes.

- (a) Determine the models $M \subseteq \mathcal{P}_n$ of T_n .
- (b) Show/argue that $T \models r_i \rightarrow r_j$ for any $0 < i, j \le n$.
- (c) Compare the models of T_n with the models of $T_n \cup \{r_1\}$? Does T_n properly formalize reachability among the nodes in the ring?
- **2.** Consider a set of nodes $U_n = \{1, \ldots, n\}$ and a relation $E \subseteq (U_n)^2$ representing the edge relation of a graph $G = \langle U_n, E \rangle$ with *n* vertices. Which properties of *G* are captured by the following first-order sentences?
 - (a) $\phi_1 = \forall x \exists y E(x, y) \land \forall x \forall y \forall z (E(x, y) \land E(x, z) \to y = z)$
 - (b) $\phi_2 = \forall x \exists y E(y, x) \land \forall x \forall y \forall z (E(y, x) \land E(z, x) \rightarrow y = z)$
 - (c) $\phi_3 = \phi_1 \wedge \phi_2$
 - (d) $\phi_4 = \forall x E(x, x)$
 - (e) $\phi_5 = \forall x \forall y (E(x, y) \to E(y, x))$
 - (f) $\phi_6 = \forall x \forall y \forall z (E(x,z) \land E(z,y) \to E(x,y))$
 - (g) $\phi_7 = \phi_4 \wedge \phi_5 \wedge \phi_6$
- **3.** Describe the models of ϕ_3 and ϕ_7 (see above) when n = 3.
- 4. Consider the following first-order theory

$$T = \{N(0, s(0)), \forall x \forall y (N(x, y) \rightarrow N(s(x), s(y)))\}$$

which captures for each natural number its immediate successor.

- (a) Determine the Hebrand base Hb(T).
- (b) Determine a Herbrand model $M \subseteq Hb(T)$ for T.
- (c) Is M minimal with respect to \subseteq , i.e., is there another Herbrand interpretation $M' \subset M$ of T such that $M' \models T$?