Lecture 12: Translation into Propositional Logic

1. Level numbers and stability
2. Translation into atomic programs
3. Reachability benchmark
(c) 2007 TKK / TCS

T-79.5102 / Autumn 2007

Motivation

The goal is to combine the knowledge representation capabilities of normal programs with the efficiency of SAT solvers.

- To realize this setting, we provide a faithful and polynomial-time translation $\mathrm{Tr}_{\mathrm{AT}}$ from normal programs into atomic programs having rules of the form $a \leftarrow \sim C$ only.
- Such a transformation is inherently non-modular but $\operatorname{Tr}_{\mathrm{AT}}(P)$ is always tight so that $P \equiv{ }_{\mathrm{v}} \operatorname{Comp}\left(\operatorname{Tr}_{\mathrm{AT}}(P)\right)$.
- This leads to an alternative strategy for computing stable models with SAT solvers along with approaches based on loop formulas.

1. LEVEL NUMBERS AND STABILITY

The tightness condition for a normal program P and a supported model $M \models \operatorname{Comp}(P)$ involves a function $\lambda: M \rightarrow \mathbb{N}$ such that

$$
\lambda(B)<\lambda(a)
$$

for every rule $a \leftarrow B \in P^{M}$ such that $B \subseteq M$.
Note that $a \leftarrow B \in P^{M}$ and $B \subseteq M$ imply that there is a supporting rule $a \leftarrow B, \sim C \in \operatorname{SuppR}(P, M)$ for $a \in M$.

However, the function λ above is not unique. E.g., the function $\lambda^{\prime}(a)=\lambda(a)+1$ satisfies this condition whenever λ does.

- In the sequel, we provide sufficient conditions for a unique level numbering $\lambda: M \rightarrow \mathbb{N}$ that captures the stability of M.

Definition. Let M be a supported model of a normal program P.
A function $\lambda: M \rightarrow \mathbb{N}$ is a level numbering for M iff for all $a \in M$,

$$
\lambda(a)=\min \{\lambda(B) \mid a \leftarrow B, \sim C \in \operatorname{SuppR}(P, M)\}
$$

where $\lambda(B)=\max \{\lambda(b) \mid b \in B\}+1$, and in particular, $\lambda(\emptyset)=1$.

Example. Consider a positive normal program $P=\{a \leftarrow b . \quad b \leftarrow a$. $\}$ and its supported models $M_{1}=\emptyset$ and $M_{2}=\{a, b\}$:

1. There is a trivial level numbering $\lambda_{1}: M_{1} \rightarrow \mathbb{N}$ for M_{1}.
2. The requirements for a level numbering $\lambda_{2}: M_{2} \rightarrow \mathbb{N}$ are:

$$
\lambda_{2}(a)=\lambda_{2}(b)+1 \text { and } \lambda_{2}(b)=\lambda_{2}(a)+1
$$

\Longrightarrow There is no such level numbering λ_{2}.

Properties of Level Numberings (I)

Proposition. If P is a normal program, $M \in \operatorname{SuppM}(P)$ a supported model, and λ is a level numbering for M, then $M \in \operatorname{SM}(P)$.

Proof. To prove the critical half $M \subseteq \operatorname{LM}\left(P^{M}\right)$ of stability, it is shown by induction on $\lambda(a)$ that $a \in M$ implies $a \in \operatorname{LM}\left(P^{M}\right)$.

1. If $a \in M$ has the smallest value n of $\lambda(a)$, we have $\lambda(a)=\lambda(B)$ for some $a \leftarrow B, \sim C \in \operatorname{SuppR}(P, M)$. The definition of $\lambda(B)$ implies $B=\emptyset$ and $\lambda(a)=n=1$. Thus a is a fact in P^{M} and $a \in \operatorname{LM}\left(P^{M}\right)$.
2. For $a \in M$ such that $\lambda(a)>1$, we note that $\lambda(a)=\lambda(B)$ for some $a \leftarrow B, \sim C \in \operatorname{SuppR}(P, M)$. It follows that $a \leftarrow B \in P^{M}$ and $M \models B$. The definition of $\lambda(B)$ implies $\lambda(b)<\lambda(a)$ for every $b \in B$. Thus $B \subseteq \operatorname{LM}\left(P^{M}\right)$ by the inductive hypothesis and $a \in \operatorname{LM}\left(P^{M}\right)$ holds since $a \leftarrow B \in P^{M}$.
© 2007 TKK / TCS

T-79.5102 / Autumn 2007
Translation into propositional logic

Properties of Level Numberings (II)

Proposition. A level numbering λ for $M \in \operatorname{SuppM}(P)$ is unique.
Proof. Suppose that λ is not unique, i.e., there is a different level numbering λ^{\prime} for M. We prove by induction on $\lambda(a)$ that $\lambda^{\prime}(a)=\lambda(a)$.

1. Suppose that $\lambda(a)=1$. It follows that $\lambda(B)=1$ for some $a \leftarrow B, \sim C \in \operatorname{SuppR}(P, M)$. Thus $B=\emptyset$ must be the case, and $\lambda^{\prime}(B)=1$ and $\lambda^{\prime}(a)=1$ by the definition of level numberings.
2. Then assume $\lambda(a)>1$. The definition of $\lambda(a)$ implies that $\lambda(a)=\lambda(B)$ for some rule $a \leftarrow B, \sim C \in \operatorname{SuppR}(P, M)$. Since $\lambda(b)<\lambda(a)$ for each $b \in B$ by definition, we obtain $\lambda^{\prime}(B)=\lambda(B)$ by the inductive hypothesis. Thus $\lambda^{\prime}(a) \leq \lambda(a)$. Assuming $\lambda^{\prime}(a)<\lambda(a)$ suggests a rule $a \leftarrow B^{\prime}, \sim C^{\prime} \in \operatorname{SuppR}(P, M)$ with $\lambda^{\prime}\left(B^{\prime}\right)<\lambda^{\prime}(B)$ and $\lambda\left(B^{\prime}\right)=\lambda^{\prime}\left(B^{\prime}\right)<\lambda(a)$, a contradiction.

Assigning Level Numbers to Atoms

A concrete level numbering can be obtained from the construction of the least model $\mathrm{LM}(P)$ for a positive program P.
$>$ Recall that if P is finite, then $\operatorname{lfp}\left(\mathrm{T}_{P}\right)=\mathrm{T}_{P} \uparrow i$ for some $i \in \mathbb{N}$ where the operator T_{P} is defined by

$$
\mathrm{T}_{P}(A)=\{a \mid a \leftarrow B \in P \text { and } B \subseteq A\} .
$$

Definition. The level number $\# a$ of an atom $a \in \operatorname{LM}(P)$ is the least number $n \in \mathbb{N}$ such that $a \in\left(\mathrm{~T}_{P} \uparrow n\right) \backslash\left(\mathrm{T}_{P} \uparrow n-1\right)$.

Example. For a positive program consisting of

$$
\text { a. } \quad a \leftarrow c . \quad b \leftarrow a . \quad c \leftarrow a, b . \quad d \leftarrow d, c .
$$

we have $\mathrm{LM}(P)=\{a, b, c\}$ and the corresponding level numbers are $\# a=1, \# b=2$, and $\# c=3$. The number $\# d$ is undefined $(d \notin \operatorname{LM}(P))$.
© 2007 TKK / TCS

Properties of Level Numberings (III)

Proposition. If P is a normal program and $M \in \mathrm{SM}(P)$, then $\#: M \rightarrow \mathbb{N}$ as defined for $M=\operatorname{LM}\left(P^{M}\right)$ is a level numbering for M.

Proof. Now $M=\operatorname{lfp}\left(\mathrm{T}_{P M}\right)$ since $M \in \mathrm{SM}(P)$.
(i) We define $M_{i}=\mathrm{T}_{P^{M}} \uparrow i$ for $i \geq 0$.
(ii) Then the level number $\# a$ of an atom $a \in M=\operatorname{LM}\left(P^{M}\right)$ is the least number $i \in \mathbb{N}$ such that $a \in M_{i} \backslash M_{i-1}$ by definition.
(iii) Next we prove by induction on i that for each $a \in M_{i}$,

$$
\# a=\min \{\# B \mid a \leftarrow B, \sim C \in \operatorname{SuppR}(P, M)\}
$$

where $\# B=\max \{\# b \mid b \in B\}+1$.

Proof by Induction

The base case $i=0$ is trivial, since $M_{0}=\emptyset$.
Then consider any $a \in M_{i}$ when $i>0$. The case $a \in M_{i-1}$ is covered by inductive hypothesis, so let $a \in M_{i} \backslash M_{i-1}$. It follows that $\# a=i>0$.

1. Now there is $a \leftarrow B, \sim C \in \operatorname{SuppR}(P, M)$ such that $a \leftarrow B \in P^{M}$ and $B \subseteq M_{i-1}$. Thus $\# B=\max \{\# b \mid b \in B\}+1 \leq i$.
2. Assuming $\# B<i$ implies $\# b<i-1$ for all $b \in B, B \subseteq M_{i-2}$, and $a \in M_{i-1}$, a contradiction. Hence $\# B=i$.
3. Thus $m_{a}=\min \{\# B \mid a \leftarrow B, \sim C \in \operatorname{SuppR}(P, M)\} \leq i=\# a$.
4. Assuming $m_{a}<i$ implies $\# B^{\prime}<i$ for some other supporting rule $a \leftarrow B^{\prime}, \sim C^{\prime} \in \operatorname{SuppR}(P, M)$ and $a \in M_{i-1}$, a contradiction.
It follows that $m_{a}=i=\# a$ as was to be shown.

Characterization of Stable Models

Theorem. For a normal logic program P and an interpretation
$M \subseteq \mathrm{Hb}(P), M \in \mathrm{SM}(P)$ if and only if

$$
M \in \operatorname{SuppM}(P) \text { and there is a level numbering } \lambda \text { for } M \text {. }
$$

Example. Recall the supported models $M_{1}=\emptyset$ and $M_{2}=\{a, b\}$ of the normal program $P=\{a \leftarrow b . \quad b \leftarrow a$. $\}$.

1. Now M_{1} is stable since $\#_{1}: M_{1} \rightarrow \mathbb{N}$ is trivially a level numbering.
2. The model M_{2} is not stable because the set of equations

$$
\left\{\begin{array}{l}
\#_{2}(a)=\#_{2}(b)+1 \\
\#_{2}(b)=\#_{2}(a)+1
\end{array}\right.
$$

for a level numbering $\#_{2}$ has no solution.

2. TRANSLATION INTO ATOMIC PROGRAMS

- An atomic normal program $\operatorname{Tr}_{\mathrm{AT}}(P)=$

$$
\operatorname{Tr}_{\text {SUPP }}(P) \cup \operatorname{Tr}_{\mathrm{CTR}}(P) \cup \operatorname{Tr}_{\mathrm{MAX}}(P) \cup \operatorname{Tr}_{\mathrm{MIN}}(P)
$$

is utilized as an intermediary representation.
Level numbers have to be captured using binary counters which are represented by vectors $c[1 \ldots n]=c_{1}, \ldots, c_{n}$ of propositional atoms.

- The logarithm $\nabla P=\left\lceil\log _{2}(|\mathrm{Hb}(P)|+2)\right\rceil$ gives an upper bound for the number of bits needed in such counters.
- A number of primitive operations involving binary counters of n bits are formalized as subprograms to be described next.

C 2007 TKK / TCS

T-79.5102 / Autumn 2007 Translation into propositional logic

Primitives for Binary Counters

1. The program $\operatorname{SEL}(c[1 \ldots n])$ selects a value for $c[1 \ldots n]$:

$$
c_{1} \leftarrow \sim \overline{c_{1}} . \quad \overline{c_{1}} \leftarrow \sim c_{1} . \quad \ldots \quad c_{n} \leftarrow \sim \overline{c_{n}} . \quad \overline{c_{n}} \leftarrow \sim c_{n} .
$$

2. The program $\operatorname{NXT}(c[1 \ldots n], d[1 \ldots n])$ sets the value of $d[1 \ldots n]$ as the successor of the value of $c[1 \ldots n]$ in binary representation.
3. The program $\operatorname{FIX}(c[1 \ldots n], v)$ sets a fixed value v for $c[1 \ldots n]$.
4. The program $\operatorname{LT}(c[1 \ldots n], d[1 \ldots n])$ checks whether the value of $c[1 \ldots n]$ is lower than that of $d[1 \ldots n]$.
5. The program $\mathrm{EQ}(c[1 \ldots n], d[1 \ldots n])$ tests whether the values of $c[1 \ldots n]$ and $d[1 \ldots n]$ are the same.
Remark. The activation of these primitives can be controlled with additional negative conditions.

Translation $\operatorname{Tr}_{\text {Supp }}(P)$

Definition. A rule $r=a \leftarrow B, \sim C \in P$ is translated into

$$
\{a \leftarrow \sim \overline{\mathrm{bt}(r)} . \overline{\mathrm{bt}(r)} \leftarrow \sim \mathrm{bt}(r) . \quad \mathrm{bt}(r) \leftarrow \sim \bar{B}, \sim C .\} .
$$

An atom $a \in \operatorname{Hb}(P)$ is translated into $\bar{a} \leftarrow \sim a$.
Remark. The intuitive reading of $\mathrm{bt}(r)$ is that the body of r is true.
Theorem. For a normal program P and an interpretation $M \subseteq \operatorname{Hb}(P)$, $M \in \operatorname{SuppM}(P)$ if and only if

$$
\begin{aligned}
N=M \cup & \{\bar{a} \mid a \in \operatorname{Hb}(P) \backslash M\} \cup \\
& \{\operatorname{bt}(r) \mid r \in \operatorname{SuppR}(P, M)\} \cup\{\overline{\mathrm{bt}(r)} \mid r \in P \backslash \operatorname{SuppR}(P, M)\}
\end{aligned}
$$

belongs to $\operatorname{SM}\left(\operatorname{Tr}_{\text {SUPP }}(P)\right)$.
© 2007 TKK / TCS

T-79.5102 / Autumn 2007
Translation into propositional logic

Translation $\operatorname{Tr}_{\text {CTR }}(P)$

- The goal of $\operatorname{Tr}_{\text {CTR }}(P)$ is to select/set values for counters.
- Additional counters $\mathrm{nxt}(a)$ and $\operatorname{ctr}(r)$ of ∇P bits are associated with atoms $a \in \mathrm{Hb}(P)$ and rules $r \in P$, respectively.

Definition. An atom $a \in \operatorname{Hb}(P)$ is translated into subprograms
$\operatorname{SEL}(a[1 \ldots \nabla P], \sim \bar{a})$ and $\operatorname{NXT}(a[1 \ldots \nabla P], \operatorname{nxt}(a)[1 \ldots \nabla P], \sim \bar{a})$.
A rule $r=a \leftarrow B, \sim C \in P$ is translated into a subprogram

$$
\begin{cases}\operatorname{FIX}(\operatorname{ctr}(r)[1 \ldots \nabla P], 1, \sim \overline{\operatorname{bt}(r)}), & \text { if } B=\emptyset, \text { and } \\ \operatorname{SEL}(\operatorname{ctr}(r)[1 \ldots \nabla P], \sim \overline{\operatorname{bt}(r)}), & \text { otherwise } .\end{cases}
$$

Let $\operatorname{Ext}(a[1 \ldots \nabla P], v)$ be the resulting set of true atoms describing the bit statuses of $a[1 \ldots \nabla P]$ when the counter has a value $0 \leq v<2^{\nabla P}$.

Translation $\operatorname{Tr}_{\text {MAX }}(P)$

Definition. An atom $b \in B$ appearing in $r=a \leftarrow B, \sim C \in P$ is translated into following set of rules:

$$
\begin{aligned}
& \mathrm{LT}(\operatorname{ctr}(r)[1 \ldots \nabla P], \operatorname{nxt}(b)[1 \ldots \nabla P], \sim \overline{\operatorname{bt}(r)}) \cup \\
& \mathrm{EQ}(\operatorname{ctr}(r)[1 \ldots \nabla P], \operatorname{nxt}(b)[1 \ldots \nabla P], \sim \overline{\mathrm{bt}(r)}) \cup \\
& \{\perp \leftarrow \sim \overline{\mathrm{bt}(r)}, \sim \overline{\mathrm{tt}(\operatorname{ctr}(r), \mathrm{nxt}(b))}\} \cup \\
& \quad\{\max (r) \leftarrow \sim \overline{\mathrm{bt}(r)}, \sim \overline{\operatorname{eq}(\operatorname{ctr}(r), \operatorname{nxt}(b))}\} .
\end{aligned}
$$

Moreover, a rule $r=a \leftarrow B, \sim C \in P$ is translated into

$$
\perp \leftarrow \sim \overline{\mathrm{bt}(r)}, \sim \max (r) .
$$

Remark. The intuitive reading of $\max (r)$ is that the value of $\operatorname{ctr}(r)[1 \ldots \nabla P]$ equals to the intended maximum.
(c) 2007 TKK / TCS

T-79.5102 / Autumn 2007 Translation into propositional logic

Translation $\operatorname{Tr}_{\text {MIN }}(P)$

Definition. A rule $r=a \leftarrow B, \sim C \in \operatorname{Def}_{P}(a)$ is translated into
$\mathrm{LT}(\operatorname{ctr}(r)[1 \ldots \nabla P], a[1 \ldots \nabla P], \sim \overline{\mathrm{bt}(r)}) \cup$

$$
\begin{aligned}
& \mathrm{EQ}(\operatorname{ctr}(r)[1 \ldots \nabla P], a[1 \ldots \nabla P], \sim \overline{\mathrm{bt}(r)}) \cup \\
& \qquad \begin{aligned}
&\{\perp \leftarrow \sim \overline{\mathrm{bt}(r)},\sim \overline{\operatorname{tt}(\operatorname{ctr}(r), a)}\} \cup \\
&\{\min (a) \leftarrow \sim \overline{\operatorname{bt}(r)}, \sim \overline{\operatorname{eq}(\operatorname{ctr}(r), a)}\} .
\end{aligned}
\end{aligned}
$$

Moreover, an atom $a \in \operatorname{Hb}(P)$ is translated into $\perp \leftarrow \sim \bar{a}, \sim \min (a)$.
Remark. The intuitive reading of $\min (a)$ is that the value of $a[1 \ldots \nabla P]$ equals to the intended minimum.

Example

Recall the normal program P with rules $r_{1}=a \leftarrow b$ and $r_{2}=b \leftarrow a$.
$>$ In addition to subprograms, the rules for a and r_{1} are:

$$
\begin{aligned}
& a \leftarrow \sim \overline{\mathrm{bt}\left(r_{1}\right)}, \quad \overline{\mathrm{bt}\left(r_{1}\right)} \leftarrow \sim \mathrm{bt}\left(r_{1}\right) . \quad \mathrm{bt}\left(r_{1}\right) \leftarrow \sim \bar{b} . \quad \bar{b} \leftarrow \sim b . \\
& \perp \leftarrow \sim \sim \overline{\mathrm{bt}\left(r_{1}\right)}, \sim \overline{\operatorname{tt}\left(\operatorname{ctr}\left(r_{1}\right), \mathrm{nxt}(b)\right)} . \\
& \perp \leftarrow \sim \overline{\mathrm{bt}\left(r_{1}\right)}, \sim \overline{\operatorname{lt}\left(\operatorname{ctr}\left(r_{1}\right), a\right)} . \\
& \max \left(r_{1}\right) \leftarrow \sim \overline{\mathrm{bt}\left(r_{1}\right)}, \sim \overline{\operatorname{eq}\left(\operatorname{ctr}\left(r_{1}\right), \mathrm{nxt}(b)\right)} . \\
& \min (a) \leftarrow \sim \overline{\mathrm{bt}\left(r_{1}\right)}, \sim \overline{\operatorname{eq}\left(\operatorname{ctr}\left(r_{1}\right), a\right)} . \\
& \perp \leftarrow \sim \overline{\mathrm{bt}\left(r_{1}\right)}, \sim \max \left(r_{1}\right) . \quad \perp \leftarrow \sim \bar{a}, \sim \min (a) .
\end{aligned}
$$

- Rules for b and r_{2} are symmetric.
$>$ The only stable model is $N=\left\{\bar{a}, \bar{b}, \overline{\mathrm{bt}\left(r_{1}\right)}, \overline{\mathrm{bt}\left(r_{2}\right)}\right\}$.
© 2007 TKK / TCS

T-79.5102 / Autumn 2007
Translation into propositional logic

Correctness of $\operatorname{Tr}_{\mathrm{AT}}(P)$

Definition. Let P be a normal program, $M \in \operatorname{SuppM}(P)$, \# a level numbering \#: $M \rightarrow\left\{1, \ldots, 2^{\nabla P}\right\}$ for M, and $e: \mathbf{2}^{\mathrm{Hb}(P)} \rightarrow \mathbf{2}^{\mathrm{Hb}\left(\operatorname{Tr}_{\mathrm{AT}}(P)\right)}$ a function determined by an interpretation $e(M)$ which is the union of

1. $M \cup\{\bar{a} \mid a \in \operatorname{Hb}(P) \backslash M\}$,
2. $\{\mathrm{bt}(r) \mid r \in \operatorname{SuppR}(P, M)\} \cup\{\overline{\mathrm{bt}(r)} \mid r \in P \backslash \operatorname{SuppR}(P, M)\}$,
3. $\{\max (r) \mid r \in \operatorname{SuppR}(P, M)\} \cup\{\min (a) \mid a \in M\}$,
4. $\operatorname{Ext}(a[1 \ldots \nabla P], \# a) \cup \operatorname{Ext}(n \times t(a)[1 \ldots \nabla P], \# a+1)$ for each $a \in M$,
5. $\operatorname{Ext}(\operatorname{ctr}(r)[1 \ldots \nabla P], \# B)$ where $\# B=\max \{\# b \mid b \in B\}+1$ for each $r=a \leftarrow B, \sim C \in \operatorname{SuppR}(P, M)$ and
in addition, any sets of atoms made true by comparisons involved in the subprograms $\mathrm{LT}(\ldots)$ and $\mathrm{EQ}(\ldots)$ of $\operatorname{Tr}_{\mathrm{AT}}(P)$.

Properties of $\operatorname{Tr}_{\mathrm{AT}}(P)$

Theorem. Let P be a normal program.

1. If $M \in \operatorname{SM}(P)$, then $N=e(M) \in \mathrm{SM}\left(\operatorname{Tr}_{\mathrm{AT}}(P)\right)$.
2. If $N \in \mathrm{SM}\left(\operatorname{Tr}_{\mathrm{AT}}(P)\right)$, then $M=N \cap \mathrm{Hb}(P) \in \mathrm{SM}(P)$ and $N=e(M)$.

Proof. A detailed proof can be found from a research report,
T. Janhunen: "Translatability and intranslatability results for certain classes of logic programs" [TKK/TCS, A82, 2003].

Corollary. For a normal program $P, P \equiv{ }_{\mathrm{v}} \operatorname{Tr}_{\mathrm{AT}}(P)$.
Proposition. For a normal program P, the translation $\operatorname{Tr}_{\mathrm{AT}}(P)$ can be computed in time linear with respect to $\|P\| \times \nabla P$.
© 2007 TKK / TCS

T-79.5102 / Autumn 2007
Translation into propositional logic

3. REACHABILITY BENCHMARK

- The translations $\operatorname{Tr}_{\mathrm{AT}}(P)$ and $\operatorname{Comp}(P)$ are implemented as translators lp2atomic and lp2sat to be used with lparse.
- In the implementation, the translation $\operatorname{Tr}_{\mathrm{AT}}(P)$ was optimized in a number of ways. For instance, SCCs are fully exploited.
- The benchmark is to compute all subgraphs $\left\langle V_{n}, E\right\rangle$ of a directed graph $D_{n}=\left\langle V_{n}, E_{n}\right\rangle$ where $V_{n}=\{1, \ldots, n\}$,

$$
E \subseteq E_{n}=\{\langle i, j\rangle \mid 0<i \leq n, 0<j \leq n, \text { and } i \neq j\},
$$

and all nodes of V_{n} are mutually reachable in $\left\langle V_{n}, E\right\rangle$.
> The experiments reported in the sequel were run on a 1.67 GHz CPU having 1 GBs of main memory.

Computing All Solutions

Number of Vertices	1	2	3	4	5
smodels	0.004	0.003	0.003	0.033	12
cmodels	0.031	0.030	0.124	293	-
lp2atomic+smodels	0.004	0.008	0.013	0.393	353
lp2sat+chaff	0.011	0.009	0.023	1.670	-
lp2sat+relsat	0.004	0.005	0.018	0.657	1879
wf+lp2sat+relsat	0.009	0.013	0.018	0.562	1598
Models	1	1	18	1606	565080
SCCs S with $\|S\|>1$	0	0	3	4	5
Rules (lparse)	3	14	39	84	155
Rules (lp2atomic)	3	18	240	664	1920
Clauses (lp2sat)	4	36	818	2386	7642
Clauses (wf+lp2sat)	2	10	553	1677	5971

OBJECTIVES

You are aware of SAT solvers as potential search engines for ASP and know some systems based on this architecture:

1. assat: http://assat.cs.ust.hk/
2. cmodels: http://www.cs.utexas.edu/users/tag/cmodels/
3. lp2sat: http://www.tcs.hut.fi/Software/lp2sat/
> You have tried out one of the SAT-based ASP solvers in practice.

- You know that there is a faithful and polynomial time transformation from normal programs into propositional logic.
- You are able to identify the effects of the major sources of non-modularity in the transformation.

C 2007 TKK / TCS

T-79.5102 / Autumn 2007
Translation into propositional logic
© 2007 TKK / TCS

Recall the characterization of a stable model $M \in \operatorname{SM}(P)$ in terms of a level numbering \#: $M \rightarrow \mathbb{N}$.

Can you think of any optimizations of $\operatorname{Tr}_{\mathrm{AT}}(P)$, e.g., when the normal program P under consideration
> contains only binary rules of the form $a \leftarrow B, \sim C$ where $|B| \leq 2$,
$>$ contains only unary rules of the form $a \leftarrow B, \sim C$ where $|B| \leq 1$, or
$>$ contains only atomic rules of the form $a \leftarrow \sim C$?
Do syntactic restrictions of this kind essentially reduce the expressive power of normal programs?

