T-79.5102 / Autumn 2007

4)

Lecture 11: Relationship with Propositional LogicI

Outline

Relationship with propositional logic

Expressive power
Clark's completion
Loop formulas

Characterization of stable models

O o o o O

Tight programs

T-79.5102 / Autumn 2007 Relationship with propositional logic

-

Modular Representation for CIausesI

O There is a faithful and modular translation Try from sets of
clauses into normal programs (involving constraints).

Definition. An individual clause AV —B is translated into
Trn(Av-B) ={a+ ~a a< ~a |ac AUB}U{L « ~A ~B}
and Try(S) = U{Trn(AV —B) | AV —B € S} for a set of clauses S
Theorem. For any sets of clauses S S, and S,
S=y Tin(S) and Tin(STUS) =y Tin(S1) UTiN(S).

Proof sketch. There is a bijection f: CM(S) — SM(Trn(S)) defined
by f(M)=Mu{a|acHb(S)\M} so that f~1(M) =MnNHD(S). The

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

1. EXPRESSIVE POWER I

O In the sequel, we concentrate on the class of normal programs

Relationship with propositional logic

although many results can be generalized for snodel s programs.

O It can be formally proved that normal programs under stable model
semantics are strictly more expressive than propositional theories.

O The proof is based on the existence of translations of specific
kinds between normal programs and propositional theories.

O In this respect, the basic criteria imposed on a translation Tr are:
1. Faithfulness: T =y, Tr(T).
2. Modularity: Tr(ToUT) =y Tr(T) UTr(To).

Here we assume that Hby(T) = Hb(T) C Hb(Tr(T)), i.e.,
Tr may introduce new atoms which remain invisible in Tr(T).

- J

© 2007 TKK / TCS

_

modularity of Try follows from Try(SEUS) = Trn(S1) UTin(S). O

J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Relationship with propositional logic

-

An Impossibility Result'

O Normal programs cannot be modularly represented with clauses.

Theorem. There is no faithful and modular translation Trc from
normal programs into sets of clauses.

Proof. Assume the contrary, i.e., for all normal programs P, Py, and
P, P=, Tl’c(P) and Tl’c(Pl U Pz) =y Tl’c(Pl) U Tl’c(Pz).

Consider normal programs Pp ={a« ~a, ~b. } and P,={b. }:
1. Now SM(P;) = 0 implies that CM(Trc(Py)) = 0.
2. Thus CM(Trc(P1) UTrc(P2)) =0 and also CM(Trc(PLUP,)) = 0.
3. It follows that SM(PLUP,) =0, because PLUP, =, Trc(PLUP,).

_

A contradiction, since SM(PLUP,) = {{b}}. O

J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Relationship with propositional logic

-

2. CLARK'S COMPLETIONI

O The preceding analysis shows that any faithful translation from

normal programs into clauses is inherently non-modular.

O Thus there is no chance of obtaining a transformation that would
work on a rule-by-rule basis (in analogy to Try for clauses).

O Clark's completion procedure provides a non-modular translation
of a normal program P into a propositional theory Comp(P).

O Although the translation Comp(+) is not always faithful, it can be
characterized in terms of supported models of normal programs.

Definition. Given a normal program P and an atom a € Hb(P), let
Defp(a) denote the definition of ain P, i.e., the set of rules
a«<— B, ~C € P having a as their head.

_

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Relationship with propositional logic

-

Translating Definitions of Atoms'

Definition. For a finite normal program P, the theory Comp(P)
includes an equivalence a < ((ByA—=C1)V...V(ByA—=Cp)) for each
atom a € Hb(P) and its definition

Defp(a) = {a<— B1, ~C;. LA Bn, ~Ch. }
A number of observations about Comp(P) follow:

1. Clark’s completion is inherently non-modular because, e.g.,

2. The respective transformation is not faithful in general because
SM(P) = {0} and CM(Comp(P)) = {0,{a}} for P={a«<—a. }.

3. The derivation of a CNF for Comp(P) is exponential in the worst

case unless new atoms are introduced as “names” for rule bodies.

_

Comp({a«<h. a«< ~h.}) #Z Comp({a<b. })UComp({a< ~b. }).

T-79.5102 / Autumn 2007 Relationship with propositional logic

Supported Models'

Definition. For a normal program P, an interpretation M C Hb(P) is a
supported model of P if and only if M = Tpu(M).

Proposition. If M C Hb(P) is a supported model of a normal program
P and a€ M, then there is a supporting rule a <+ B, ~C € P such that
ais the head of the rule and M =BU~C.

Example. The normal program P={a < b. b« a} has two
supported models M; = ® and M, = {a,b} based on PM1 =P = PMz,

However, only My is stable, as
1. LM(PM) =LM(P) =0=M; and
2. LM(PM2) = LM(P) = 0 # Mj.

J

© 2007 TKK / TCS

_

4)

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Relationship with propositional logic

-

Properties of Stable and Supported Models'

Theorem. For a normal program P, it holds in general that
SM(P) C SuppM(P) = CM(Comp(P)).

Proposition. If a normal program P contains only atomic rules of the
form a <« ~C, then SM(P) = SuppM(P) = CM(Comp(P)).

== The completion Comp(-) is faithful for atomic normal programs.

Example. Consider a normal program P={a«— ~b. b« ~a. } and
its completion Comp(P) = {a«+ —b, b~ —a}.

A perfect match of models results:

SM(P) = {{a}, {b}} = CM(Comp(P)).

_

~

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Relationship with propositional logic

4)

3. LOOP FORMULAS I

O Since Comp(P) is faithful for certain programs, the question is
whether it can be revised to be faithful for all normal programs.

0 As suggested by preceding examples, the answer to this question
goes back to positively interdependent atoms in programs.

Definition. Given a normal program P, a loop L is a set of atoms
{al, .. .,an} - Hb(P) such that y<41...<1a, and a3 <1 a1 in DG+(P).
On the basis of this definition, we observe that

1. atoms in a loop L are mutually dependent in terms of <, and

2. a loop L does not have to be maximal, i.e., an SCC of DG*(P).

_

J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Relationship with propositional logic

-

Supporting Rules'

O A supported model M of P has a set of supporting rules
SuppR(PM) ={a—B,~CeP|MEBU~C}.
O A loop L for P must be similarly supported under stable models

but the support for L must be external to L.

Definition. Given a loop L of a normal program P, the set
ExtSupp(L, P) includes BA —C for each a€ L and each externally
supporting rule a<+ B, ~C € P such that BNL = 0.

Definition. The disjunctive loop formula LoopF(L,P) associated with
a loop L of a normal program P is

VL — VExtSupp(L,P)

and LoopF(P) = {LoopF(L,P) | L # 0 is a loop of P}.

© 2007 TKK / TCS

10

T-79.5102 / Autumn 2007 Relationship with propositional logic

11

4)

Consider the following normal logic program P:

a«<bh. b+ a C«+— ~d. d«— ~c. a <« ~C. b« ~d.

1. Since a<1 b and b < a are the only positive dependencies in
DG (P), there is only one nonempty loop L = {a,b} for P.

2. The set ExtSupp(L,P) = {—c,—~d}.

3. The respective loop formula LoopF(L,P) is
avb— —-cv-—d.

Remark. If the last two rules of P were dropped, LoopF(L,P) would be
revised to avb — L, which indicates that LoopF(P) is non-modular.

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Relationship with propositional logic

-

4. CHARACTERIZATION OF STABLE MODELSI

Theorem. Let P be a finite normal logic program P and M C Hb(P)
an interpretation. Then M € SM(P) if and only if

M [= Comp(P) U LoopF(P).

Example. For the program P from the preceding example, we have

Comp(P) ULoopF(P) =
{a~bv-c, b~av-d, c——d, d— —c, avb— —-cVv-d}

which has two classical models M1 = {a,b,c} and M, = {a,b,d}.

Then SM(P) = {M1,M>} by the theorem above.

_

~

© 2007 TKK / TCS

12

T-79.5102 / Autumn 2007 Relationship with propositional logic

-

Summary of Properties'

O The translation Tre (P) = Comp(P) ULoopF(P) is faithful.

O It is clearly non-modular because both Comp(P) and LoopF(P)
may depend on several rules of P.

O The last two reflect the difference between expressive powers of
normal programs and propositional logic in a very concrete way.
Example. Consider, for instance, the number of loops for a program
Ph={a —a;. |1<i,j<n}
Any subset of Hb(P,) = {ay,...,an} is a loop!

_

O Unfortunately, the translation is also exponential in the worst case.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Relationship with propositional logic

-

Computing Stable Models with SAT SoIversI

O Despite the space complexity, the translation Tre (P) can be
exploited in the computation of stable models incrementally.

O This can be highly effective, e.g., if only one stable model is
computed, or the existence of stable models is checked.

O A number of primitives are needed for an implementation:

Completion(P): Form the completion of P in clausal form.

MaxLoop(M, P):
MakeLoopF(L,P): Form the loop formula for L in clausal form.

Find a maximal unsupported loop L C M.

Satisfy(C): Compute one model (as a set of literals) for C.
Consistent(M): Check the consistency of M.
Stable(M, P): Check the stability of M with respect to P.

~

J

© 2007 TKK / TCS

13

14

T-79.5102 / Autumn 2007 Relationship with propositional logic

-

The assat AIgorithmI

function AsSAT(P): boolean;
var C: clause set; M: literal set; L: atom set;
C := Completion(P);
M := Satisfy(C);
while Consistent(M) do
if Stable(M,P) then return T;
L := MaxLoop(M,P);
C :=CUMakeLoopF(L,P);
M := Satisfy(C);
done
return |

Remark. If the stability test fails, we have LM(PN) C N for
N = MNHb(P) which implies the existence of a loop L C N\ LM(PN).

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Relationship with propositional logic

-

5. TIGHT PROGRAMS I

O There are subclasses of normal programs P for which Comp(P)
provides a sufficient translation and no loop formulas are needed.

Definition. A normal logic program P is tight on an interpretation
M C Hb(P) if and only if there is a mapping A : M — N such that
A(a) > A\(B) = max{\A(b) | b € B} for every a+ B PM with BC M.

Definition. A normal program P is tight if and only if it is tight on
every M € CM(Comp(P)) = SuppM(P).

Theorem. If a finite normal logic program P is tight, then
SM(P) = CM(Comp(P)) = SuppM (P).

Proof. Since SM(P) C SuppM(P) in general, it remains to prove
SuppM (P) € SM(P) when P is tight. Consider any M € SuppM (P).

_

J

© 2007 TKK / TCS

15

16

T-79.5102 / Autumn 2007 Relationship with propositional logic

Proof Continued I

Now M = Tpm (M) which implies that LM(PM) C Tpw (M) = M. We
prove that a€ M implies ac LM(PM) by complete induction on A(a).

1. For the base case, consider any atom a € M having the minimum
value n for A(a). There must be a supporting rule a< B, ~C € P
such that M EBU~C, i.e,, a< B¢ PM and B C M. Because P is
tight on M, A(B) < A(a) which implies B =0 because A(a) is the
minimum. Thus a appears as a fact in PM so that ac LM(PM).

2. Then consider any atom a € M for which A(a) > n. As above,
there is a supporting rule such that a< B € PM BCM, and
n<A(B) <A(a) as P is tight on M. It follows by the inductive
hypothesis that B C LM(PM). Thus also ac LM(PV).

4)

To conclude, we have shown that M = LM(PM), ie, MeSM(P). O
\ J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Relationship with propositional logic

4 N

Consider the following program P, and Gnd(P,):

Edge(0,1). ... Edge(n—1,n). Edge(n,0).

In(X,y) < ~Out(x,y), Edge(x,y). Out(X,y) < ~In(x,y), Edge(x,y).
F < 1In(0,1), ...,In(n—1,n), In(n,0), ~F.

F — Out(x,y), Out(z V), ~F, Edge(X,y), Edge(z,v), X # z
Reach(x,y) < In(x,y), Edge(x,y). Node(x) < Edge(X,y).
Reach(x,y) < Reach(x,2),In(zy), Node(x), Edge(z,y).

When n= 2, for instance, one of the n+ 1 = 3 supported models is

M = {Edge(0,1), Edge(1,2),Edge(2,0),0ut(0,1),In(1,2),In(2,0),
Node(0), Node(1), Node(2),Reach(1,2),Reach(2,0),Reach(1,0) }.

The program Gnd(Py) is tight on M—indicating that M is stable.

J

© 2007 TKK / TCS

17

18

T-79.5102 / Autumn 2007 Relationship with propositional logic

OBJECTIVES I

O You understand the difference of normal logic programs and
propositional logic in terms of expressive power.

O You are able to define desirable properties for translations:
faithfulness, modularity, and polynomiality (even linearity).

O You know the two major sources of non-modularity in ASP:
1. The definition of an atom Defp(a) may involve several rules.
2. The definitions of mutually dependent atoms which belong to

the same SCC Sof DG'(P) should go together.

O You are aware of SAT solvers as potential search engines for ASP.

4)

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Relationship with propositional logic

4 N

TIME TO PONDERI

The translation
TreL (P) = Comp(P) ULoopF(P)

from normal logic programs to propositional logic is faithful but
exponential in the worst case.

0 Do you see any possibilities for polynomial transformation?

[0 Does the case of smodel s programs present any further difficulties
in view of a faithful translation?

© 2007 TKK / TCS

19

20

