Lecture 11: Relationship with Propositional Logic

Outline

- ► Expressive power
- ► Clark's completion
- ► Loop formulas
- > Characterization of stable models
- ► Tight programs

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Relationship with propositional logic

1. EXPRESSIVE POWER

- ➤ In the sequel, we concentrate on the class of normal programs although many results can be generalized for smodels programs.
- It can be formally proved that normal programs under stable model semantics are strictly more expressive than propositional theories.
- The proof is based on the existence of translations of specific kinds between normal programs and propositional theories.
- > In this respect, the basic criteria imposed on a translation Tr are:
 - 1 Faithfulness: $T \equiv_{v} Tr(T)$.
 - 2. Modularity: $\operatorname{Tr}(T_1 \cup T_2) \equiv_{\operatorname{v}} \operatorname{Tr}(T_1) \cup \operatorname{Tr}(T_2)$.

Here we assume that $Hb_v(T) = Hb(T) \subseteq Hb(Tr(T))$, i.e., Tr may introduce new atoms which remain invisible in Tr(T).

Modular Representation for Clauses

> There is a *faithful* and *modular* translation Tr_N from sets of clauses into normal programs (involving constraints).

Definition. An individual clause $A \lor \neg B$ is translated into

$$\mathrm{Tr}_{\mathrm{N}}(A \vee \neg B) = \{a \leftarrow \overline{a}. \ \overline{a} \leftarrow a. \ | \ a \in A \cup B\} \cup \{\bot \leftarrow A, \overline{B}\}$$

and $\operatorname{Tr}_{N}(S) = \bigcup \{\operatorname{Tr}_{N}(A \lor \neg B) \mid A \lor \neg B \in S\}$ for a set of clauses S.

Theorem. For any sets of clauses S, S_1 , and S_2 ,

 $S \equiv_{v} \operatorname{Tr}_{N}(S)$ and $\operatorname{Tr}_{N}(S_{1} \cup S_{2}) \equiv_{v} \operatorname{Tr}_{N}(S_{1}) \cup \operatorname{Tr}_{N}(S_{2})$.

Proof sketch. There is a bijection $f : CM(S) \to SM(Tr_N(S))$ defined by $f(M) = M \cup \{\overline{a} \mid a \in Hb(S) \setminus M\}$ so that $f^{-1}(M) = M \cap Hb(S)$. The modularity of Tr_N follows from $Tr_N(S_1 \cup S_2) = Tr_N(S_1) \cup Tr_N(S_2)$. \Box

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Relationship with propositional logic

3

An Impossibility Result

> Normal programs cannot be modularly represented with clauses.

Theorem. There is no faithful and modular translation Tr_{C} from normal programs into sets of clauses.

Proof. Assume the contrary, i.e., for all normal programs P, P_1 , and P_2 , $P \equiv_v \operatorname{Tr}_{C}(P)$ and $\operatorname{Tr}_{C}(P_1 \cup P_2) \equiv_v \operatorname{Tr}_{C}(P_1) \cup \operatorname{Tr}_{C}(P_2)$.

Consider normal programs $P_1 = \{a \leftarrow \neg a, \neg b\}$ and $P_2 = \{b\}$:

1. Now $SM(P_1) = \emptyset$ implies that $CM(Tr_C(P_1)) = \emptyset$.

2. Thus $CM(Tr_C(P_1) \cup Tr_C(P_2)) = \emptyset$ and also $CM(Tr_C(P_1 \cup P_2)) = \emptyset$.

3. It follows that $SM(P_1 \cup P_2) = \emptyset$, because $P_1 \cup P_2 \equiv_v Tr_C(P_1 \cup P_2)$.

A contradiction, since $SM(P_1 \cup P_2) = \{\{b\}\}$.

2. CLARK'S COMPLETION

- ➤ The preceding analysis shows that any *faithful* translation from normal programs into clauses is inherently *non-modular*.
- > Thus there is no chance of obtaining a transformation that would work on a rule-by-rule basis (in analogy to Tr_N for clauses).
- Clark's completion procedure provides a non-modular translation of a normal program P into a propositional theory Comp(P).
- Although the translation Comp(·) is not always faithful, it can be characterized in terms of supported models of normal programs.

Definition. Given a normal program P and an atom $a \in Hb(P)$, let $Def_P(a)$ denote the *definition* of a in P, i.e., the set of rules $a \leftarrow B, \sim C \in P$ having a as their head.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Relationship with propositional logic

Translating Definitions of Atoms

Definition. For a *finite* normal program P, the theory Comp(P) includes an equivalence $a \leftrightarrow ((B_1 \land \neg C_1) \lor \ldots \lor (B_n \land \neg C_n))$ for each atom $a \in \text{Hb}(P)$ and its definition

$$\operatorname{Def}_P(a) = \{a \leftarrow B_1, \sim C_1, \dots, a \leftarrow B_n, \sim C_n\}$$

A number of observations about Comp(P) follow:

- 1. Clark's completion is inherently non-modular because, e.g., $\operatorname{Comp}(\{a \leftarrow b. \ a \leftarrow \sim b.\}) \not\equiv \operatorname{Comp}(\{a \leftarrow b.\}) \cup \operatorname{Comp}(\{a \leftarrow \sim b.\}).$
- 2. The respective transformation is not faithful in general because $SM(P) = \{\emptyset\}$ and $CM(Comp(P)) = \{\emptyset, \{a\}\}$ for $P = \{a \leftarrow a. \}$.
- 3. The derivation of a CNF for Comp(P) is exponential in the worst case unless new atoms are introduced as "names" for rule bodies.

© 2007 TKK / TCS

Supported Models

Definition. For a normal program P, an interpretation $M \subseteq Hb(P)$ is a supported model of P if and only if $M = T_{PM}(M)$.

Proposition. If $M \subseteq Hb(P)$ is a supported model of a normal program P and $a \in M$, then there is a supporting rule $a \leftarrow B$, $\sim C \in P$ such that a is the head of the rule and $M \models B \cup \sim C$.

Example. The normal program $P = \{a \leftarrow b, b \leftarrow a\}$ has two supported models $M_1 = \emptyset$ and $M_2 = \{a, b\}$ based on $P^{M_1} = P = P^{M_2}$.

However, only M_1 is stable, as

1. $LM(P^{M_1}) = LM(P) = \emptyset = M_1$ and

2. $LM(P^{M_2}) = LM(P) = \emptyset \neq M_2$

\odot 2007 TKK / TCS

T-79.5102 / Autumn 2007

Relationship with propositional logic

8

7

Properties of Stable and Supported Models

Theorem. For a normal program P, it holds in general that

 $SM(P) \subseteq SuppM(P) = CM(Comp(P)).$

Proposition. If a normal program *P* contains only *atomic* rules of the form $a \leftarrow \sim C$, then SM(P) = SuppM(P) = CM(Comp(P)).

 \implies The completion Comp (\cdot) is faithful for *atomic* normal programs.

Example. Consider a normal program $P = \{a \leftarrow \neg b, b \leftarrow \neg a\}$ and its completion $\text{Comp}(P) = \{a \leftrightarrow \neg b, b \leftrightarrow \neg a\}$.

A perfect match of models results:

 $\mathrm{SM}(P) = \{\{a\}, \{b\}\} = \mathrm{CM}(\mathrm{Comp}(P))$

3. LOOP FORMULAS

Example

Consider the following normal logic program P:

 $a \leftarrow b.$ $b \leftarrow a.$ $c \leftarrow \sim d.$ $d \leftarrow \sim c.$ $a \leftarrow \sim c.$ $b \leftarrow \sim d.$

- 1. Since $a \leq_1 b$ and $b \leq_1 a$ are the only positive dependencies in $DG^+(P)$, there is only one nonempty loop $L = \{a, b\}$ for P.
- 2. The set $\operatorname{ExtSupp}(L, P) = \{\neg c, \neg d\}$.
- 3. The respective loop formula LoopF(L, P) is

 $a \lor b \to \neg c \lor \neg d.$

Remark. If the last two rules of *P* were dropped, LoopF(L, P) would be revised to $a \lor b \to \bot$, which indicates that LoopF(P) is non-modular.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Relationship with propositional logic

12

11

4. CHARACTERIZATION OF STABLE MODELS

Theorem. Let P be a *finite* normal logic program P and $M \subseteq Hb(P)$ an interpretation. Then $M \in SM(P)$ if and only if

 $M \models \operatorname{Comp}(P) \cup \operatorname{LoopF}(P).$

Example. For the program P from the preceding example, we have

 $\operatorname{Comp}(P) \cup \operatorname{LoopF}(P) =$

 $\{a \leftrightarrow b \lor \neg c, \ b \leftrightarrow a \lor \neg d, \ c \leftrightarrow \neg d, \ d \leftrightarrow \neg c, \ a \lor b \rightarrow \neg c \lor \neg d\}$

which has two classical models $M_1 = \{a, b, c\}$ and $M_2 = \{a, b, d\}$.

Then $SM(P) = \{M_1, M_2\}$ by the theorem above.

Summary of Properties

- ▶ The translation $\operatorname{Tr}_{\operatorname{CL}}(P) = \operatorname{Comp}(P) \cup \operatorname{LoopF}(P)$ is faithful.
- ➤ It is clearly non-modular because both Comp(P) and LoopF(P) may depend on several rules of P.
- > Unfortunately, the translation is also *exponential* in the worst case.
- ➤ The last two reflect the difference between expressive powers of normal programs and propositional logic in a very concrete way.

Example. Consider, for instance, the number of loops for a program

$$P_n = \{a_i \leftarrow a_j. \mid 1 \le i, j \le n\}.$$

Any subset of $Hb(P_n) = \{a_1, \ldots, a_n\}$ is a loop!

T-79.5102 / Autumn 2007

© 2007 TKK / TCS

Relationship with propositional logic

Computing Stable Models with SAT Solvers

- ► Despite the space complexity, the translation $Tr_{CL}(P)$ can be exploited in the computation of stable models *incrementally*.
- This can be highly effective, e.g., if only one stable model is computed, or the existence of stable models is checked.
- A number of primitives are needed for an implementation:
 Completion(P): Form the completion of P in clausal form.
 Satisfy(C): Compute one model (as a set of literals) for C.
 - Consistent(M): Check the consistency of M.
 - Stable(M, P): Check the stability of M with respect to P.
 - MaxLoop(M, P): Find a maximal unsupported loop $L \subseteq M$.
 - MakeLoopF(L, P): Form the loop formula for L in clausal form.

The **assat** Algorithm

function AsSAT(P): boolean;
var C: clause set; M: literal set; L: atom set;

$$C := \text{Completion}(P);$$

 $M := \text{Satisfy}(C);$
while Consistent(M) do
if Stable(M,P) then return $\top;$
 $L := \text{MaxLoop}(M,P);$
 $C := C \cup \text{MakeLoopF}(L,P);$
 $M := \text{Satisfy}(C);$
done
return $\bot;$
Remark. If the stability test fails, we have $\text{LM}(P^N) \subset N$ for
 $N = M \cap \text{Hb}(P)$ which implies the existence of a loop $L \subseteq N \setminus \text{LM}(P^N)$.

\odot 2007 TKK / TCS

T-79.5102 / Autumn 2007

Relationship with propositional logic

16

15

5. TIGHT PROGRAMS

There are subclasses of normal programs P for which Comp(P) provides a sufficient translation and no loop formulas are needed.

Definition. A normal logic program *P* is *tight on an interpretation* $M \subseteq Hb(P)$ if and only if there is a mapping $\lambda : M \to \mathbb{N}$ such that $\lambda(a) > \lambda(B) = \max\{\lambda(b) \mid b \in B\}$ for every $a \leftarrow B \in P^M$ with $B \subseteq M$.

Definition. A normal program P is *tight* if and only if it is tight on every $M \in CM(Comp(P)) = SuppM(P)$.

Theorem. If a finite normal logic program P is tight, then

SM(P) = CM(Comp(P)) = SuppM(P)

Proof. Since $SM(P) \subseteq SuppM(P)$ in general, it remains to prove $SuppM(P) \subseteq SM(P)$ when P is tight. Consider any $M \in SuppM(P)$.

20

OBJECTIVES

- > You understand the difference of normal logic programs and propositional logic in terms of expressive power.
- You are able to define desirable properties for translations: faithfulness, modularity, and polynomiality (even linearity).
- ➤ You know the two major sources of *non-modularity* in ASP:
 - 1. The definition of an atom $Def_P(a)$ may involve several rules.
 - 2. The definitions of mutually dependent atoms which belong to the same SCC S of $DG^+(P)$ should go together.
- > You are aware of SAT solvers as potential search engines for ASP.

© 2007 TKK / TCS

Proof Continued

Now $M = T_{P^M}(M)$ which implies that $LM(P^M) \subseteq T_{P^M}(M) = M$. We prove that $a \in M$ implies $a \in LM(P^M)$ by complete induction on $\lambda(a)$.

- 1. For the base case, consider any atom $a \in M$ having the minimum value n for $\lambda(a)$. There must be a supporting rule $a \leftarrow B, \neg C \in P$ such that $M \models B \cup \neg C$, i.e., $a \leftarrow B \in P^M$ and $B \subseteq M$. Because P is tight on M, $\lambda(B) < \lambda(a)$ which implies $B = \emptyset$ because $\lambda(a)$ is the minimum. Thus a appears as a fact in P^M so that $a \in LM(P^M)$.
- 2. Then consider any atom $a \in M$ for which $\lambda(a) > n$. As above, there is a supporting rule such that $a \leftarrow B \in P^M$, $B \subseteq M$, and $n \leq \lambda(B) < \lambda(a)$ as P is tight on M. It follows by the inductive hypothesis that $B \subseteq LM(P^M)$. Thus also $a \in LM(P^M)$.

To conclude, we have shown that $M = \operatorname{LM}(P^M)$, i.e., $M \in \operatorname{SM}(P)$. \Box

© 2007 TKK / TCS

