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Le
ture 10: Modularity Aspe
ts

Outline

➤ Strati�
ation

➤ Module ar
hite
ture for ASP

➤ Compositional semanti
s

➤ Modularizing weak equivalen
e
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1. STRATIFICATION

➤ The number of stable models varies from program to program.

➤ This is quite natural given the modelling philosophy of ASP: astri
t 
orresponden
e of answer sets and solutions is sought for.
➤ The semanti
s of a positive program P is uniquely determined bythe least model LM(P). Likewise, the well-founded model

WFM(P) assigns a unique set of literals with a normal program P.
➤ These observations raise the question whether the existen
e of aunique stable model 
an be guaranteed under any 
ir
umstan
es.
➤ This is a property of strati�ed programs to be explored next.
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Dependen
y Graphs

De�nition. The dependen
y graph DG(P) of an smodels program Pis 〈Hb(P),≤1〉 where b≤1 a holds for a,b ∈ Hb(P) if and only if (i)1. there is a basi
 rule a← B,∼C ∈ P,2. there is a 
hoi
e rule {A}← B,∼C ∈ P su
h that a ∈ A,3. there is a 
ardinality rule a← l {B,∼C} ∈ P, or4. there is a weight rule a← l [B = wB,∼C = vC] ∈ P,and b ∈ B∪C, or(ii) b = a and a ∈ A for some 
hoi
e rule {A} ← B,∼C ∈ P.Remark. The positive dependen
y graph DG+(P) of P is de�nedanalogously but using only positive dependen
ies.
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Strongly Conne
ted Components

➤ The overall dependen
y relation ≤ (⊆ Hb(P)2) is the re�exive andtransitive 
losure (≤1)
∗ of the immediate dependen
y relation ≤1.

➤ Thus a≤ b holds if and only if there is a sequen
e a1, . . . ,an ofatoms from Hb(P) su
h that n > 0 and a = a1≤1 . . .≤1an = b.De�nition. A strongly 
onne
ted 
omponent (SCC) of a dependen
ygraph DG(P) = 〈Hb(P),≤1〉 is a maximal subset S of Hb(P) su
h that

a≤ b and b≤ a for every a,b ∈ S.Example. The dependen
y graph DG(P) of the smodels program

a← b. b← c. c← a.

{a,b,c}← d,∼e. d←∼e. e←∼d.has strongly 
onne
ted 
omponents S1 = {a,b,c} and S2 = {d,e}.
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Strati�ed Programs

➤ The strongly 
onne
ted 
omponents of DG(P) determine sets ofatoms whi
h are re
ursively de�ned in terms of the rules of P.

➤ A dependen
y c≤1 a in DG(P) is negative i� ∼c appears in anegative body ∼C, or c = a appears in the head of a 
hoi
e rule.De�nition. A program P is strati�ed i� the strongly 
onne
ted
omponents of DG(P) do not involve negative dependen
ies.Proposition. A strati�ed smodels program P has a unique stablemodel M su
h that M = WFM(P)∩Hb(P).Remark. The strati�ability of a program 
an be de
ided in linear timebe
ause the strongly 
onne
ted 
omponents of DG(P) 
an be
omputed in time linear with respe
t to ||P|| (Tarjan's algorithm).
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Example

Consider a normal program P 
onsisting of the following rules:

a← b,∼c. b← a,∼d. c←∼e.

d← e. e← a.1. The program is not strati�ed be
ause DG(P) has a single SCC
S = Hb(P) = {a,b,c,d,e} involving negative dependen
ies.2. If the last rule is dropped, the resulting program P′ is strati�edbe
ause DG(P′) has SCCs S1 = {e}, S2 = {d}, S3 = {c}, and
S4 = {a,b}�not involving negative dependen
ies.Remark. The 
omputation of the unique M = {c} ∈ SM(P′) 
an bedone in a modular fashion using an order of SCCs whi
h is 
ompatiblewith DG(P)�su
h as S1,S2,S3,S4: ∼e, ∼d, c, ∼a, ∼b.
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2. MODULE ARCHITECTURE FOR ASP
➤ Modular program development has a number of advantages:1. It enfor
es a good programming style by giving extra stru
turefor programs (sets of rules in ASP).2. The semanti
s of programs is easier to grasp and potentially
omplex details 
an be hidden inside modules.3. The task of programming is naturally divided into subtasksthat 
an be delegated for a team of programmers.

➤ In the sequel, a module ar
hite
ture originally proposed forPROLOG programs [Gaifman and Shapiro, 1988℄, is tailored to the
ase of smodels programs under stable model semanti
s.
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Modules for smodels Programs

➤ Given a set of rules R, we write Hb(R) and Head(R) for the sets ofatoms that appear in R and in the heads of rules of R, respe
tively.De�nition. A program module P is a quadruple 〈R, I,O,H〉 where1. I, O, and H are distin
t sets input, output, and hidden atoms,respe
tively, and2. R is a set of rules su
h that

Hb(R)⊆ Hb(P) = I∪O∪H, and Head(R)∩ I = /0.Example. Verify these requirements for an smodels program module

P = 〈{a←∼b. b←∼a,∼c. },{c},{a},{b}〉.
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Hebrand Bases and Interpretations

➤ The Herbrand base Hb(P) of P = 〈R, I,O,H〉 partitions into1. Hbi(P) = I (input atoms),2. Hbo(P) = O (output atoms),3. Hbv(P) = I∪O (visible atoms), and4. Hbh(P) = H (hidden atoms).

➤ An interpretation M ⊆ Hb(P), whi
h determines the true atoms of

Hb(P), has analogous proje
tions with respe
t to these sets:

Mi, Mo, Mv = Mi∪Mo, and Mh.

➤ The idea is that the visible part is a

essible by other modules.
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Example: Graph Colouring

A program module for 3-
olouring a graph having at most n nodes:

On: {r(x),g(x),b(x) | 1≤ x≤ n}

Rn: {{r(x),g(x),b(x)} ← node(x). | 1≤ x≤ n} ∪

{f← node(x),∼r(x),∼g(x),∼b(x),∼f. | 1≤ x≤ n} ∪

{node(x)← edge(x,y). | 1≤ x≤ n} ∪

{node(y)← edge(x,y). | 1≤ x≤ n} ∪

{f← edge(x,y), r(x), r(y),∼f. | 1≤ x < y≤ n} ∪

{f← edge(x,y), g(x), g(y),∼f. | 1≤ x < y≤ n} ∪

{f← edge(x,y), b(x), b(y),∼f. | 1≤ x < y≤ n}

In : {edge(x,y) | 1≤ x < y≤ n}

=⇒ Atoms in Hn = {f}∪{node(x) | 1≤ x≤ n} are hidden.
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Interpreting Input Atoms within the Redu
t

De�nition. For a module P = 〈R, I,O,H〉 and an interpretation
M ⊆ Hb(P) determining the input Mi for P, the redu
t RM,I 
ontains:1. For ea
h basi
 rule a← B,∼C ∈ R satisfying M |= (B∩ I)∪∼C,the redu
ed rule a← (B\ I).2. For ea
h 
hoi
e rule {A} ← B,∼C ∈ R satisfying M |= (B∩ I)∪∼Cand for ea
h head atom a ∈ A∩M, the rule a← (B\ I).3. For ea
h 
ardinality rule a← l {B,∼C} ∈ R, the redu
ed rule

a← l′ {(B\ I)} with l′ = min(0, l−|B∩ I∩M|− |C \M|).4. For ea
h weight rule a← l [B = wB,∼C = vC] ∈ R, the redu
ed rule

a← l′ [(B\ I) = w(B\I)] with
l′ = min(0, l−∑b∈B∩I∩M wb−∑c∈(C\M) vc).
© 2007 TKK / TCS
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Stable Semanti
s for Program Modules

De�nition. An interpretation M ⊆ Hb(P) is a stable model of aprogram module P = 〈R, I,O,H〉 having an input interfa
e Hbi(P) i�

M \ I = LM(RM,I).Example. Verify the set of stable models

SM(P) = { /0, {a}, {b}, {a,b}, {a,c}, {b,c}}for the smodels program module P illustrated below:

{a,b}

{a,b} ←∼c. a← c,∼b. b← c,∼a.

{c}
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3. COMPOSITIONAL SEMANTICS

➤ The prin
iple of 
ompositionality: the semanti
s of an entiretheory should be a fun
tion of the semanti
s of its 
omponents.

➤ This is true for 
lassi
al propositional theories:

CM(T1∪T2) = CM(T1) 1 CM(T2)where CM(T ) = {M ⊆ Hb(P) |M |= T} and the operator 1 whi
h
ombines 
ompatible models will be de�ned next.

➤ Unfortunately, logi
 programs under stable model semanti
s donot have an analogous property for arbitrary unions of programs.

➤ Thus more attention has to be paid to 
ir
umstan
es under whi
hprograms, or modules introdu
ed so far, 
an be joined together.
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Compatibility of Models

Consider two propositional theories T1 and T2:

➤ We say that interpretations M1 ⊆ Hb(T1) and M2 ⊆ Hb(T2) are
ompatible if and only if M1∩Hb(T2) = M2∩Hb(T1).

➤ If M1 and M2 are 
ompatible, then M1 = (M1∪M2)∩Hb(T1) andsymmetri
ally M2 = (M1∪M2)∩Hb(T2).De�nition. Given sets of interpretations A1 ⊆ 2Hb(T1) and A2 ⊆ 2Hb(T2)for propositional theories T1 and T2, the natural join of A1 and A2 is
A1 1 A2 = {M1∪M2 | M1 ∈ A1, M2 ∈ A2 and

M1∩Hb(T2) = M2∩Hb(T1)}.
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Composing Programs from Modules
➤ We say that P1 = 〈R1, I1,O1,H1〉 and P2 = 〈R2, I2,O2,H2〉 respe
tthe module interfa
e of ea
h other if and only if

(I1∪O1∪H1)∩H2 = /0, (I2∪O2∪H2)∩H1 = /0, and O1∩O2 = /0.De�nition. The 
omposition of program modules P1 = 〈R1, I1,O1,H1〉and P2 = 〈R2, I2,O2,H2〉 respe
ting module interfa
es of ea
h other is

P1⊕P2 = 〈R1∪R2,(I1 \O2)∪ (I2 \O1),O1∪O2,H1∪H2〉.Example. Verify interfa
e 
onditions for the following 
omposition:

{a}

a← c. c←∼b.

{b}

⊕

{b}

b←∼a.

{a}

= {a,b}

a← c. c←∼b. b←∼a.

/0
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Counter-Example for ⊕
➤ The interfa
e 
onditions involved in the de�nition ⊕ are notsu�
ient to guarantee the 
ompositionality of stable semanti
s.

Example. Let us analyze the 
omposition illustrated below

{a}

a← b.

{b}

⊕

{b}

b← a.

{a}

= {a,b}

a← b. b← a.

/0in more detail. Now, we have SM(P1) = { /0,{a,b}}= SM(P2) but

SM(P1⊕P2) = { /0} di�ers from SM(P1) 1 SM(P2) = { /0,{a,b}}.
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Joins of Program Modules

➤ In the pre
eding example, the key issue is that a and b arepositively interdependent and hen
e false in the least model.

➤ The 
ompositionality of stable semanti
s is a
hieved if the 
reationof su
h dependen
ies is pre-empted in program 
omposition.De�nition. Modules P1 and P2, for whi
h P1⊕P2 is de�ned, aremutually dependent if there is an SCC S in DG+(P1⊕P2) su
h that

S∩Hbo(P1) 6= /0 and S∩Hbo(P2) 6= /0.If there is no su
h S, we say that the join P1⊔P2 = P1⊕P2 is de�ned.Example. In the pre
eding example, the join is not de�ned be
ause ofthe strongly 
onne
ted 
omponent S = {a,b} involved in the positivedependen
y graph DG+({a← b. b← a. }).
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Module TheoremTheorem. Let P1 and P2 be two program modules su
h that P1⊔P2is de�ned. Then SM(P1⊔P2) = SM(P1) 1 SM(P2).Example. Consider the following 
omposition of modules:

{a}

a←∼b.

a← b.

{b}

⊕

{b}

b←∼a.

{a}

=

{a,b}

a←∼b. a← b.

b←∼a.

/01. The SCCs of DG+(P1⊕P2) are S1 = {a} and S2 = {b}.2. The sets SM(P1) = {{a},{a,b}} and SM(P2) = {{a},{b}}.3. Thus SM(P1) 1 SM(P2) = {{a}}= SM(P1⊔P2).
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Computing Stable Models for Module
➤ The de�nition of stable models for a program module P 
overs allinterpretations Mi ⊆ Hb(P).

➤ The 
ontext of P determines whi
h of them 
ome into e�e
t.
➤ The set of stable models SM(P) 
an be 
omputed by atta
hing Pto a general 
ontext that 
reates all input interpretations for P.Proposition. Let P = 〈R, I,O,H〉 be a program module and

GI = 〈{{I}. }, /0, I, /0〉 the respe
tive input generator. Then

SM(P) = SM(P⊔GI).Example. In an earlier example, the set of stable models

SM(P) = SM(P⊔G{c}) is essentially generated by the set of rules

{{a,b}←∼c. a← c,∼b. b← c,∼a. {c}. } having no input atoms.
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4. MODULARIZING WEAK EQUIVALENCE

➤ The 
omputation of SM(P) for a module P is based on an inputgenerator GI that a
ts as the most general 
ontext for P.

➤ The equivalen
e of modules 
an be addressed in the same way:Do P and Q have the same stable models in all possible 
ontexts?

➤ The role of hidden atoms must be addressed at this point.

➤ The notion of visible equivalen
e stems from the modellingphilosophy of ASP as well as the user's perspe
tive:1. The number of stable models�that 
orrespond to thesolutions of the problem�should be the same.2. The visible parts of stable models�as observed by the user ofan answer set solver�should be the same.
© 2007 TKK / TCS
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Visible/Modular Equivalen
e

De�nition. The visible and modular equivalen
e of program modules

P and Q, denoted by P≡v Q and P≡m Q, are de�ned as follows:1. P≡v Q if and only if Hbv(P) = Hbv(Q) and there is a bije
tion

f : SM(P)→ SM(Q) su
h that for all M ∈ SM(P),

M∩Hbv(P) = f (M)∩Hbv(Q).2. P≡m Q if and only if Hbi(P) = Hbi(Q) and P≡v Q.

Theorem. Let P,Q, and R be program modules su
h that P⊔R and

Q⊔R are de�ned. If P≡m Q, then P⊔R≡m Q⊔R.Remark. The 
onverse does not hold in general, i.e., P⊔R≡m Q⊔R(equivalen
e in a spe
i�
 
ontext R) might well not imply P≡m Q.
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Example

Module P: Module Q:

{a,b}

{a} ← c.

{b} ←∼c.

{c}

≡m

{a,b}

a← c,∼d. d← c,∼a.

b←∼c,∼e. e←∼c,∼b.

{c}

The modular equivalen
e of the modules P and Q illustrated above isbased on the following 
orresponden
e of stable models mediated by f :
SM(P): {c} {a,c} {} {b}

f : ↓ ↓ ↓ ↓

SM(Q): {d,c} {a,c} {e} {b}
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Modules having Enough Visible Atoms
➤ In the worst 
ase, the veri�
ation of ≡v and ≡m 
an be highly
omplex (a 
ounting problem is involved in general).
➤ Hidden atoms tend to in
rease the 
omplexity of the problem.De�nition. The hidden part of a module P = 〈R, I,O,H〉 is

Ph = 〈Rh, I∪O,H, /0〉 where Rh 
ontains rules of R de�ning atoms in H(the heads of rules are proje
ted with respe
t to H).De�nition. A program module P = 〈R, I,O,H〉 has enough visibleatoms if and only if for ea
h N ⊆ Hbv(P) = I∪O, SM(Ph) = {M}where M∩ (I∪O) = N.Remark. If Hbh(P) = /0, then the module P has enough visible atoms.
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Translation-Based Veri�
ation

➤ The translation-based method for the veri�
ation of weakequivalen
e P≡ Q 
an be generalized for modules.

➤ The relation P≡m Q 
oin
ides with RP ≡ RQ for the respe
tiverule sets, if Hbi(P) = Hbi(Q) = /0 and Hbh(P) = Hbh(Q) = /0.Theorem. Let P and Q be two 
ompatible smodels program moduleshaving the EVA property, i.e., enough visible atoms. Then

P≡m Q i� SM(EQT(P,Q)) = SM(EQT(Q,P)) = /0.Remarks. If Hbi(P) = I = Hbi(Q) 6= /0, then the stable models

EQT(P,Q) are determined using the respe
tive input generator GI .Moreover, if P⊔R and Q⊔R are de�ned, then EQT(P⊔R,Q⊔R) and

EQT(P,Q)⊔R have the same stable models (if any).
© 2007 TKK / TCS
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Tool Support

➤ The 
urrent smodels system does not distinguish input atoms.

➤ For now, the working de�nition is that input atoms have a name,i.e., are visible, but do not have any de�ning rules.

➤ The join ⊔ operator of smodels programs has been implementedas a linker 
alled lpcat (option �ag -m indi
ates modules).

$ lparse p.lp > p.sm; lparse q.lp > q.sm
$ lpcat -m p.sm q.sm | igen | smodels 0In the pipeline, igen adds an input generator to the program

➤ The translator for equivalen
e 
he
king, i.e., lpeq, supports theveri�
ation of modular equivalen
e (option �ag -m).

$ lpeq -m p.sm q.sm | lpcat - r.sm | igen | smodels 1
$ lpeq -m q.sm p.sm | lpcat - r.sm | igen | smodels 1
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OBJECTIVES

➤ You are able to form a (positive) dependen
y graph for a givenlogi
 program and exploit it in the 
omputation of stable models.
➤ You understand the limitations of stable model semanti
s in viewobtaining a 
ompositional semanti
s for ASP.

➤ You are able to relate the notion of modular equivalen
e withweak and strong equivalen
e�as regards strength and abstra
tproperties su
h as 
ongruen
e.

➤ You are familiar with the basi
 tools for linking smodels programmodules (lpcat) and verifying their equivalen
e (lpeq).
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TIME TO PONDERConsider program modules P = 〈R, I,O,H〉 for whi
h the hidden part
Ph = 〈Rh, I∪O,H, /0〉 is essentially a strati�ed program, i.e., Rh isstrati�ed when redu
ed with respe
t to an interpretation N ⊆ I∪O.

➤ Prove that modules of this kind have enough visible atoms.

➤ Provide an example of a program module whi
h is not strati�ed inthis sense but still has the EVA property.
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