
AB

T-79.5102 / Autumn 2007 Modularity aspets 1

Leture 10: Modularity Aspets

Outline

➤ Strati�ation

➤ Module arhiteture for ASP

➤ Compositional semantis

➤ Modularizing weak equivalene
© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Modularity aspets 2

1. STRATIFICATION

➤ The number of stable models varies from program to program.

➤ This is quite natural given the modelling philosophy of ASP: astrit orrespondene of answer sets and solutions is sought for.
➤ The semantis of a positive program P is uniquely determined bythe least model LM(P). Likewise, the well-founded model

WFM(P) assigns a unique set of literals with a normal program P.
➤ These observations raise the question whether the existene of aunique stable model an be guaranteed under any irumstanes.
➤ This is a property of strati�ed programs to be explored next.

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Modularity aspets 3

Dependeny Graphs

De�nition. The dependeny graph DG(P) of an smodels program Pis 〈Hb(P),≤1〉 where b≤1 a holds for a,b ∈ Hb(P) if and only if (i)1. there is a basi rule a← B,∼C ∈ P,2. there is a hoie rule {A}← B,∼C ∈ P suh that a ∈ A,3. there is a ardinality rule a← l {B,∼C} ∈ P, or4. there is a weight rule a← l [B = wB,∼C = vC] ∈ P,and b ∈ B∪C, or(ii) b = a and a ∈ A for some hoie rule {A} ← B,∼C ∈ P.Remark. The positive dependeny graph DG+(P) of P is de�nedanalogously but using only positive dependenies.© 2007 TKK / TCS

AB
T-79.5102 / Autumn 2007 Modularity aspets 4

Strongly Conneted Components

➤ The overall dependeny relation ≤ (⊆ Hb(P)2) is the re�exive andtransitive losure (≤1)
∗ of the immediate dependeny relation ≤1.

➤ Thus a≤ b holds if and only if there is a sequene a1, . . . ,an ofatoms from Hb(P) suh that n > 0 and a = a1≤1 . . .≤1an = b.De�nition. A strongly onneted omponent (SCC) of a dependenygraph DG(P) = 〈Hb(P),≤1〉 is a maximal subset S of Hb(P) suh that

a≤ b and b≤ a for every a,b ∈ S.Example. The dependeny graph DG(P) of the smodels program

a← b. b← c. c← a.

{a,b,c}← d,∼e. d←∼e. e←∼d.has strongly onneted omponents S1 = {a,b,c} and S2 = {d,e}.© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Modularity aspets 5

Strati�ed Programs

➤ The strongly onneted omponents of DG(P) determine sets ofatoms whih are reursively de�ned in terms of the rules of P.

➤ A dependeny c≤1 a in DG(P) is negative i� ∼c appears in anegative body ∼C, or c = a appears in the head of a hoie rule.De�nition. A program P is strati�ed i� the strongly onnetedomponents of DG(P) do not involve negative dependenies.Proposition. A strati�ed smodels program P has a unique stablemodel M suh that M = WFM(P)∩Hb(P).Remark. The strati�ability of a program an be deided in linear timebeause the strongly onneted omponents of DG(P) an beomputed in time linear with respet to ||P|| (Tarjan's algorithm).

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Modularity aspets 6

Example

Consider a normal program P onsisting of the following rules:

a← b,∼c. b← a,∼d. c←∼e.

d← e. e← a.1. The program is not strati�ed beause DG(P) has a single SCC
S = Hb(P) = {a,b,c,d,e} involving negative dependenies.2. If the last rule is dropped, the resulting program P′ is strati�edbeause DG(P′) has SCCs S1 = {e}, S2 = {d}, S3 = {c}, and
S4 = {a,b}�not involving negative dependenies.Remark. The omputation of the unique M = {c} ∈ SM(P′) an bedone in a modular fashion using an order of SCCs whih is ompatiblewith DG(P)�suh as S1,S2,S3,S4: ∼e, ∼d, c, ∼a, ∼b.© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Modularity aspets 7

2. MODULE ARCHITECTURE FOR ASP
➤ Modular program development has a number of advantages:1. It enfores a good programming style by giving extra struturefor programs (sets of rules in ASP).2. The semantis of programs is easier to grasp and potentiallyomplex details an be hidden inside modules.3. The task of programming is naturally divided into subtasksthat an be delegated for a team of programmers.

➤ In the sequel, a module arhiteture originally proposed forPROLOG programs [Gaifman and Shapiro, 1988℄, is tailored to thease of smodels programs under stable model semantis.

© 2007 TKK / TCS

AB
T-79.5102 / Autumn 2007 Modularity aspets 8

Modules for smodels Programs

➤ Given a set of rules R, we write Hb(R) and Head(R) for the sets ofatoms that appear in R and in the heads of rules of R, respetively.De�nition. A program module P is a quadruple 〈R, I,O,H〉 where1. I, O, and H are distint sets input, output, and hidden atoms,respetively, and2. R is a set of rules suh that

Hb(R)⊆ Hb(P) = I∪O∪H, and Head(R)∩ I = /0.Example. Verify these requirements for an smodels program module

P = 〈{a←∼b. b←∼a,∼c. },{c},{a},{b}〉.

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Modularity aspets 9

Hebrand Bases and Interpretations

➤ The Herbrand base Hb(P) of P = 〈R, I,O,H〉 partitions into1. Hbi(P) = I (input atoms),2. Hbo(P) = O (output atoms),3. Hbv(P) = I∪O (visible atoms), and4. Hbh(P) = H (hidden atoms).

➤ An interpretation M ⊆ Hb(P), whih determines the true atoms of

Hb(P), has analogous projetions with respet to these sets:

Mi, Mo, Mv = Mi∪Mo, and Mh.

➤ The idea is that the visible part is aessible by other modules.

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Modularity aspets 10

Example: Graph Colouring

A program module for 3-olouring a graph having at most n nodes:

On: {r(x),g(x),b(x) | 1≤ x≤ n}

Rn: {{r(x),g(x),b(x)} ← node(x). | 1≤ x≤ n} ∪

{f← node(x),∼r(x),∼g(x),∼b(x),∼f. | 1≤ x≤ n} ∪

{node(x)← edge(x,y). | 1≤ x≤ n} ∪

{node(y)← edge(x,y). | 1≤ x≤ n} ∪

{f← edge(x,y), r(x), r(y),∼f. | 1≤ x < y≤ n} ∪

{f← edge(x,y), g(x), g(y),∼f. | 1≤ x < y≤ n} ∪

{f← edge(x,y), b(x), b(y),∼f. | 1≤ x < y≤ n}

In : {edge(x,y) | 1≤ x < y≤ n}

=⇒ Atoms in Hn = {f}∪{node(x) | 1≤ x≤ n} are hidden.

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Modularity aspets 11

Interpreting Input Atoms within the Redut

De�nition. For a module P = 〈R, I,O,H〉 and an interpretation
M ⊆ Hb(P) determining the input Mi for P, the redut RM,I ontains:1. For eah basi rule a← B,∼C ∈ R satisfying M |= (B∩ I)∪∼C,the redued rule a← (B\ I).2. For eah hoie rule {A} ← B,∼C ∈ R satisfying M |= (B∩ I)∪∼Cand for eah head atom a ∈ A∩M, the rule a← (B\ I).3. For eah ardinality rule a← l {B,∼C} ∈ R, the redued rule

a← l′ {(B\ I)} with l′ = min(0, l−|B∩ I∩M|− |C \M|).4. For eah weight rule a← l [B = wB,∼C = vC] ∈ R, the redued rule

a← l′ [(B\ I) = w(B\I)] with
l′ = min(0, l−∑b∈B∩I∩M wb−∑c∈(C\M) vc).© 2007 TKK / TCS

AB
T-79.5102 / Autumn 2007 Modularity aspets 12

Stable Semantis for Program Modules

De�nition. An interpretation M ⊆ Hb(P) is a stable model of aprogram module P = 〈R, I,O,H〉 having an input interfae Hbi(P) i�

M \ I = LM(RM,I).Example. Verify the set of stable models

SM(P) = { /0, {a}, {b}, {a,b}, {a,c}, {b,c}}for the smodels program module P illustrated below:

{a,b}

{a,b} ←∼c. a← c,∼b. b← c,∼a.

{c}

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Modularity aspets 13

3. COMPOSITIONAL SEMANTICS

➤ The priniple of ompositionality: the semantis of an entiretheory should be a funtion of the semantis of its omponents.

➤ This is true for lassial propositional theories:

CM(T1∪T2) = CM(T1) 1 CM(T2)where CM(T) = {M ⊆ Hb(P) |M |= T} and the operator 1 whihombines ompatible models will be de�ned next.

➤ Unfortunately, logi programs under stable model semantis donot have an analogous property for arbitrary unions of programs.

➤ Thus more attention has to be paid to irumstanes under whihprograms, or modules introdued so far, an be joined together.

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Modularity aspets 14

Compatibility of Models

Consider two propositional theories T1 and T2:

➤ We say that interpretations M1 ⊆ Hb(T1) and M2 ⊆ Hb(T2) areompatible if and only if M1∩Hb(T2) = M2∩Hb(T1).

➤ If M1 and M2 are ompatible, then M1 = (M1∪M2)∩Hb(T1) andsymmetrially M2 = (M1∪M2)∩Hb(T2).De�nition. Given sets of interpretations A1 ⊆ 2Hb(T1) and A2 ⊆ 2Hb(T2)for propositional theories T1 and T2, the natural join of A1 and A2 is
A1 1 A2 = {M1∪M2 | M1 ∈ A1, M2 ∈ A2 and

M1∩Hb(T2) = M2∩Hb(T1)}.

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Modularity aspets 15

Composing Programs from Modules
➤ We say that P1 = 〈R1, I1,O1,H1〉 and P2 = 〈R2, I2,O2,H2〉 respetthe module interfae of eah other if and only if

(I1∪O1∪H1)∩H2 = /0, (I2∪O2∪H2)∩H1 = /0, and O1∩O2 = /0.De�nition. The omposition of program modules P1 = 〈R1, I1,O1,H1〉and P2 = 〈R2, I2,O2,H2〉 respeting module interfaes of eah other is

P1⊕P2 = 〈R1∪R2,(I1 \O2)∪ (I2 \O1),O1∪O2,H1∪H2〉.Example. Verify interfae onditions for the following omposition:

{a}

a← c. c←∼b.

{b}

⊕

{b}

b←∼a.

{a}

= {a,b}

a← c. c←∼b. b←∼a.

/0
© 2007 TKK / TCS

AB
T-79.5102 / Autumn 2007 Modularity aspets 16

Counter-Example for ⊕
➤ The interfae onditions involved in the de�nition ⊕ are notsu�ient to guarantee the ompositionality of stable semantis.

Example. Let us analyze the omposition illustrated below

{a}

a← b.

{b}

⊕

{b}

b← a.

{a}

= {a,b}

a← b. b← a.

/0in more detail. Now, we have SM(P1) = { /0,{a,b}}= SM(P2) but

SM(P1⊕P2) = { /0} di�ers from SM(P1) 1 SM(P2) = { /0,{a,b}}.

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Modularity aspets 17

Joins of Program Modules

➤ In the preeding example, the key issue is that a and b arepositively interdependent and hene false in the least model.

➤ The ompositionality of stable semantis is ahieved if the reationof suh dependenies is pre-empted in program omposition.De�nition. Modules P1 and P2, for whih P1⊕P2 is de�ned, aremutually dependent if there is an SCC S in DG+(P1⊕P2) suh that

S∩Hbo(P1) 6= /0 and S∩Hbo(P2) 6= /0.If there is no suh S, we say that the join P1⊔P2 = P1⊕P2 is de�ned.Example. In the preeding example, the join is not de�ned beause ofthe strongly onneted omponent S = {a,b} involved in the positivedependeny graph DG+({a← b. b← a. }).© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Modularity aspets 18

Module TheoremTheorem. Let P1 and P2 be two program modules suh that P1⊔P2is de�ned. Then SM(P1⊔P2) = SM(P1) 1 SM(P2).Example. Consider the following omposition of modules:

{a}

a←∼b.

a← b.

{b}

⊕

{b}

b←∼a.

{a}

=

{a,b}

a←∼b. a← b.

b←∼a.

/01. The SCCs of DG+(P1⊕P2) are S1 = {a} and S2 = {b}.2. The sets SM(P1) = {{a},{a,b}} and SM(P2) = {{a},{b}}.3. Thus SM(P1) 1 SM(P2) = {{a}}= SM(P1⊔P2).© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Modularity aspets 19

Computing Stable Models for Module
➤ The de�nition of stable models for a program module P overs allinterpretations Mi ⊆ Hb(P).

➤ The ontext of P determines whih of them ome into e�et.
➤ The set of stable models SM(P) an be omputed by attahing Pto a general ontext that reates all input interpretations for P.Proposition. Let P = 〈R, I,O,H〉 be a program module and

GI = 〈{{I}. }, /0, I, /0〉 the respetive input generator. Then

SM(P) = SM(P⊔GI).Example. In an earlier example, the set of stable models

SM(P) = SM(P⊔G{c}) is essentially generated by the set of rules

{{a,b}←∼c. a← c,∼b. b← c,∼a. {c}. } having no input atoms.© 2007 TKK / TCS

AB
T-79.5102 / Autumn 2007 Modularity aspets 20

4. MODULARIZING WEAK EQUIVALENCE

➤ The omputation of SM(P) for a module P is based on an inputgenerator GI that ats as the most general ontext for P.

➤ The equivalene of modules an be addressed in the same way:Do P and Q have the same stable models in all possible ontexts?

➤ The role of hidden atoms must be addressed at this point.

➤ The notion of visible equivalene stems from the modellingphilosophy of ASP as well as the user's perspetive:1. The number of stable models�that orrespond to thesolutions of the problem�should be the same.2. The visible parts of stable models�as observed by the user ofan answer set solver�should be the same.© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Modularity aspets 21

Visible/Modular Equivalene

De�nition. The visible and modular equivalene of program modules

P and Q, denoted by P≡v Q and P≡m Q, are de�ned as follows:1. P≡v Q if and only if Hbv(P) = Hbv(Q) and there is a bijetion

f : SM(P)→ SM(Q) suh that for all M ∈ SM(P),

M∩Hbv(P) = f (M)∩Hbv(Q).2. P≡m Q if and only if Hbi(P) = Hbi(Q) and P≡v Q.

Theorem. Let P,Q, and R be program modules suh that P⊔R and

Q⊔R are de�ned. If P≡m Q, then P⊔R≡m Q⊔R.Remark. The onverse does not hold in general, i.e., P⊔R≡m Q⊔R(equivalene in a spei� ontext R) might well not imply P≡m Q.© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Modularity aspets 22

Example

Module P: Module Q:

{a,b}

{a} ← c.

{b} ←∼c.

{c}

≡m

{a,b}

a← c,∼d. d← c,∼a.

b←∼c,∼e. e←∼c,∼b.

{c}

The modular equivalene of the modules P and Q illustrated above isbased on the following orrespondene of stable models mediated by f :
SM(P): {c} {a,c} {} {b}

f : ↓ ↓ ↓ ↓

SM(Q): {d,c} {a,c} {e} {b}

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Modularity aspets 23

Modules having Enough Visible Atoms
➤ In the worst ase, the veri�ation of ≡v and ≡m an be highlyomplex (a ounting problem is involved in general).
➤ Hidden atoms tend to inrease the omplexity of the problem.De�nition. The hidden part of a module P = 〈R, I,O,H〉 is

Ph = 〈Rh, I∪O,H, /0〉 where Rh ontains rules of R de�ning atoms in H(the heads of rules are projeted with respet to H).De�nition. A program module P = 〈R, I,O,H〉 has enough visibleatoms if and only if for eah N ⊆ Hbv(P) = I∪O, SM(Ph) = {M}where M∩ (I∪O) = N.Remark. If Hbh(P) = /0, then the module P has enough visible atoms.

© 2007 TKK / TCS

AB
T-79.5102 / Autumn 2007 Modularity aspets 24

Translation-Based Veri�ation

➤ The translation-based method for the veri�ation of weakequivalene P≡ Q an be generalized for modules.

➤ The relation P≡m Q oinides with RP ≡ RQ for the respetiverule sets, if Hbi(P) = Hbi(Q) = /0 and Hbh(P) = Hbh(Q) = /0.Theorem. Let P and Q be two ompatible smodels program moduleshaving the EVA property, i.e., enough visible atoms. Then

P≡m Q i� SM(EQT(P,Q)) = SM(EQT(Q,P)) = /0.Remarks. If Hbi(P) = I = Hbi(Q) 6= /0, then the stable models

EQT(P,Q) are determined using the respetive input generator GI .Moreover, if P⊔R and Q⊔R are de�ned, then EQT(P⊔R,Q⊔R) and

EQT(P,Q)⊔R have the same stable models (if any).© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Modularity aspets 25

Tool Support

➤ The urrent smodels system does not distinguish input atoms.

➤ For now, the working de�nition is that input atoms have a name,i.e., are visible, but do not have any de�ning rules.

➤ The join ⊔ operator of smodels programs has been implementedas a linker alled lpcat (option �ag -m indiates modules).

$ lparse p.lp > p.sm; lparse q.lp > q.sm
$ lpcat -m p.sm q.sm | igen | smodels 0In the pipeline, igen adds an input generator to the program

➤ The translator for equivalene heking, i.e., lpeq, supports theveri�ation of modular equivalene (option �ag -m).

$ lpeq -m p.sm q.sm | lpcat - r.sm | igen | smodels 1
$ lpeq -m q.sm p.sm | lpcat - r.sm | igen | smodels 1© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Modularity aspets 26

OBJECTIVES

➤ You are able to form a (positive) dependeny graph for a givenlogi program and exploit it in the omputation of stable models.
➤ You understand the limitations of stable model semantis in viewobtaining a ompositional semantis for ASP.

➤ You are able to relate the notion of modular equivalene withweak and strong equivalene�as regards strength and abstratproperties suh as ongruene.

➤ You are familiar with the basi tools for linking smodels programmodules (lpcat) and verifying their equivalene (lpeq).

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Modularity aspets 27

TIME TO PONDERConsider program modules P = 〈R, I,O,H〉 for whih the hidden part
Ph = 〈Rh, I∪O,H, /0〉 is essentially a strati�ed program, i.e., Rh isstrati�ed when redued with respet to an interpretation N ⊆ I∪O.

➤ Prove that modules of this kind have enough visible atoms.

➤ Provide an example of a program module whih is not strati�ed inthis sense but still has the EVA property.
© 2007 TKK / TCS

