T-79.5102 / Autumn 2007 Modularity aspects

-

O
O
g
U

Lecture 10: Modularity Aspects'

Stratification

Outline

Module architecture for ASP
Compositional semantics

Modularizing weak equivalence

T-79.5102 / Autumn 2007 Modularity aspects

-

Dependency Graphs'

Definition. The dependency graph DG(P) of an snodel s program P
is (Hb(P),<1) where b <1 a holds for a,b € Hb(P) if and only if (i)

1. there is a basic rule a< B, ~C € P,
2. there is a choice rule {A} < B, ~C € P such that a€ A,
3. there is a cardinality rule a« | {B, ~C} € P, or
4. there is a weight rule a< | [B=wg, ~C =\Vc| € P,
and be BUC, or
(i) b=a and a € A for some choice rule {A} — B, ~C € P.

Remark. The positive dependency graph DG* (P) of P is defined
analogously but using only positive dependencies.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Modularity aspects

1. STRATIFICATIONI

The number of stable models varies from program to program.

This is quite natural given the modelling philosophy of ASP: a
strict correspondence of answer sets and solutions is sought for.

The semantics of a positive program P is uniquely determined by
the least model LM(P). Likewise, the well-founded model
WFM (P) assigns a unique set of literals with a normal program P.

These observations raise the question whether the existence of a
unique stable model can be guaranteed under any circumstances.

This is a property of stratified programs to be explored next.

© 2007 TKK / TCS

_

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Modularity aspects

-

Strongly Connected Components'

O The overall dependency relation < (C Hb(P)?) is the reflexive and
transitive closure (<1)* of the immediate dependency relation <j.

O Thus a<b holds if and only if there is a sequence ay,...,a, of
atoms from Hb(P) such that n>0and a=a1<1...<jan=h.

Definition. A strongly connected component (SCC) of a dependency
graph DG(P) = (Hb(P), <1) is a maximal subset S of Hb(P) such that
a<band b<aforevery abeS

Example. The dependency graph DG(P) of the snodel s program

a«<—bh. b+—c. cC—a

{a,b,c} —d,~e d«— ~e. e« ~d.

has strongly connected components § = {a,b,c} and & = {d, e}.

~

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Modularity aspects

4)

Stratified Programs I

O The strongly connected components of DG(P) determine sets of
atoms which are recursively defined in terms of the rules of P.

O A dependency ¢ <1 ain DG(P) is negative iff ~C appears in a
negative body ~C, or c = a appears in the head of a choice rule.

Definition. A program P is stratified iff the strongly connected
components of DG(P) do not involve negative dependencies.

Proposition. A stratified smodel s program P has a unique stable
model M such that M = WFM(P) NnHb(P).

Remark. The stratifiability of a program can be decided in linear time
because the strongly connected components of DG(P) can be
computed in time linear with respect to ||P|| (Tarjan’s algorithm).

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Modularity aspects

4 N

Consider a normal program P consisting of the following rules:

a«< b, ~c. b—a, ~d. C— ~e
d—e e—a.
1. The program is not stratified because DG(P) has a single SCC
S=Hb(P) = {a,b,c,d, e} involving negative dependencies.

2. If the last rule is dropped, the resulting program P’ is stratified
because DG(P') has SCCs §; = {e}, S ={d}, Ss={c}, and
S, = {a,b}—not involving negative dependencies.

Remark. The computation of the unique M = {c} € SM(P’) can be
done in a modular fashion using an order of SCCs which is compatible
with DG(P)—such as §,$,S3,S: ~€, ~d, ¢, ~a, ~b.

T-79.5102 / Autumn 2007

4)

2. MODULE ARCHITECTURE FOR ASPI

O Modular program development has a number of advantages:

Modularity aspects

1. It enforces a good programming style by giving extra structure
for programs (sets of rules in ASP).

2. The semantics of programs is easier to grasp and potentially
complex details can be hidden inside modules.

3. The task of programming is naturally divided into subtasks
that can be delegated for a team of programmers.

O In the sequel, a module architecture originally proposed for
PROLOG programs [Gaifman and Shapiro, 1988], is tailored to the
case of snodel s programs under stable model semantics.

J

© 2007 TKK / TCS

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

4 N

Modules for snodel s Programs'

O Given a set of rules R, we write Hb(R) and Head(R) for the sets of
atoms that appear in R and in the heads of rules of R, respectively.

Modularity aspects

Definition. A program module P is a quadruple (R,1,0O,H) where

1. I, O, and H are distinct sets input, output, and hidden atoms,
respectively, and

2. Ris a set of rules such that

Hb(R) € Hb(P) =1 UOUH, and Head(R)N1 = 0.

Example. Verify these requirements for an snodel s program module
P={{a—~b. b« ~a~c. },{c},{a},{b}).

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Modularity aspects

Hebrand Bases and Interpretations'

O The Herbrand base Hb(PP) of P = (R,I,O,H) partitions into
1. Hbi(P) =1 (input atoms),
2. Hbo(P) = O (output atoms),
3. Hby(P) =1UO (visible atoms), and
4. Hbp(P) =H (hidden atoms).
O An interpretation M C Hb(IP), which determines the true atoms of
Hb(P), has analogous projections with respect to these sets:

Mi, Mg, My = MjUMjg, and My,

O The idea is that the visible part is accessible by other modules.

_

4)

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Modularity aspects

-

Example: Graph CoIouringI

A program module for 3-colouring a graph having at most n nodes:

On: {r(x),g(x),b(x) | 1<x<n}
Ro: {{r(x),g(x),b(X)} < node(x). |1<x<n}U
{f < node(x), ~r(x), ~g(X), ~b(x), ~f. |1 <x<n}U
Y. [1<x<n}u
y). |[1<x<n}U
{f — edge(X,y), r(X), r(y), ~f. |1<x<y<n}U

{node(X) <« edge(x
{node(y) « edge(X,
(
{f —edge(xy), g(x), g(y), ~f. [1<x<y<n}u
{f — edge(x,y), b(X), b(y), ~f. |1<x<y<n}
In: {edge(xy)|1<x<y<n}

= Atoms in Hp = {f} U{node(X) | 1 < x < n} are hidden.

_

© 2007 TKK / TCS

10

T-79.5102 / Autumn 2007

Interpreting Input Atoms within the Reduct'

Definition. For a module P = (R,1,0,H) and an interpretation
M C Hb(P) determining the input M; for P, the reduct R! contains:

Modularity aspects

1. For each basic rule a+« B, ~C € R satisfying M = (BN I)uU~C,
the reduced rule a« (B\1).

2. For each choice rule {A} — B, ~C € R satisfying M = (BN1)U~C
and for each head atom a€ ANM, the rule a <« (B\1).

3. For each cardinality rule a« | {B, ~C} € R, the reduced rule
a<—1"{(B\1)} with I’=min(0,I — |BNINM|—|C\ M|).

4. For each weight rule a« | [B=wg, ~C =Vc| € R, the reduced rule
a«—|' [(B\ |) = W(B\l)] with

I"=min(0,1 — T peginm Wb — Fce(c\m) Ve)-

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

4 N

Stable Semantics for Program Modules'

Definition. An interpretation M C Hb(P) is a stable model of a
program module P = (R,1,0,H) having an input interface Hb;(P) iff

M\ I =LM(RM).

Modularity aspects

Example. Verify the set of stable models
SM(P) = {0, {a}, {b}, {a,b}, {a,c}, {b,c}}
for the snodel s program module P illustrated below:

{a,b}

{a,b} «—~c. a<—c,~b bec ~a

{c}

© 2007 TKK / TCS

11

12

T-79.5102 / Autumn 2007 Modularity aspects

-

3. COMPOSITIONAL SEMANTICS I

0 The principle of compositionality: the semantics of an entire
theory should be a function of the semantics of its components.

O This is true for classical propositional theories:
CM (Tl UT2) =CM (Tl) X CM (Tg)
where CM(T) = {M CHb(P) | M =T} and the operator X which

combines compatible models will be defined next.

O Unfortunately, logic programs under stable model semantics do
not have an analogous property for arbitrary unions of programs.

O Thus more attention has to be paid to circumstances under which
programs, or modules introduced so far, can be joined together.

J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Modularity aspects

-

Compatibility of Models'

Consider two propositional theories Ty and To:

[0 We say that interpretations M1 C Hb(T1) and My C Hb(T,) are
compatible if and only if M1 NHb(T,2) = M2 NHb(Ty).

O If M1 and My are compatible, then My = (M3 UM2)NHb(T;) and
symmetrically My = (M1 UM2) NHb(Ty).
Definition. Given sets of interpretations A; C 2Hb(T) and A, C 2H0(T2)
for propositional theories Ty and Ty, the natural join of Ay and Ay is
A1NA2={M1UM2| M1 € Ay, Mo e Ay and
M1N Hb(Tz) =M2nN Hb(Tl)}.

© 2007 TKK / TCS

13

14

T-79.5102 / Autumn 2007 Modularity aspects

-

Composing Programs from Modules'

0 We say that Py = <R;|_,|1,0;|_, H1> and P, = <R2, l2,02, H2> respect
the module interface of each other if and only if

(|1U01UH1)ﬂH2:0, (|2U02UH2)0H1:®, and O1N 0O, =0.

Definition. The composition of program modules P; = (Ry,11,01,Hs)
and P2 = (Ry,12,02,H2) respecting module interfaces of each other is

P1@®P2 = (R1IUR, (11\02) U (I2\ O1),01 U0z, H1 UHy).

Example. Verify interface conditions for the following composition:

{a} {b} {a,b}
a«—c. c—~h. @ | b—~a =| a«+C. C«—~b b«—~a
{b} {a} 0

~

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Modularity aspects

-

Counter-Example for EBI

O The interface conditions involved in the definition & are not
sufficient to guarantee the compositionality of stable semantics.

Example. Let us analyze the composition illustrated below

{a} {b} {a b}
a—bhb |[®| b—a |[=]| a~—h b«—a
{b} {a} 0

in more detail. Now, we have SM(PP1) = {0,{a,b}} = SM(P2) but
SM(P1 @ Pp) = {0} differs from SM(PP1) X SM(P2) = {0,{a,b}}.

_

© 2007 TKK / TCS

15

16

_

-

T-79.5102 / Autumn 2007 Modularity aspects

Joins of Program Modules'

O In the preceding example, the key issue is that a and b are
positively interdependent and hence false in the least model.

0 The compositionality of stable semantics is achieved if the creation

of such dependencies is pre-empted in program composition.

Definition. Modules 1 and P2, for which P1 @ P5 is defined, are
mutually dependent if there is an SCC Sin DG (P1®P») such that

SN Hbe(P1) # 0 and SN Hbe(P2) # 0.
If there is no such S, we say that the join Py LUIP,; =Py P2 is defined.
Example. In the preceding example, the join is not defined because of

the strongly connected component S= {a,b} involved in the positive
dependency graph DG" ({a<b. b—a }).

17

J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Modularity aspects

4 N

Module Theorem I

Theorem. Let P; and P2 be two program modules such that Py LIP»
is defined. Then SM(P1LUPy) = SM(PP1) X SM(IP2).

Example. Consider the following composition of modules:

{a} {a,b}
a«— ~h. {b}

b—r~a |=
a«<b. @ - b« ~a

a—n~b a<h

1. The SCCs of DG" (P1 ®P7) are S = {a} and S = {b}.
2. The sets SM(P1) = {{a},{a,b}} and SM(P2) = {{a},{b}}.
3. Thus SM(Py) X SM(P,) = {{a}} = SM(P1LIP,).

© 2007 TKK / TCS

18

_

T-79.5102 / Autumn 2007 Modularity aspects

4)

Computing Stable Models for ModuIeI

O The definition of stable models for a program module P covers all
interpretations M; C Hb(P).

O The context of P determines which of them come into effect.

0 The set of stable models SM(P) can be computed by attaching P
to a general context that creates all input interpretations for P.

Proposition. Let P=(R,I,0,H) be a program module and
Gy = ({{l}. },0,1,0) the respective input generator. Then
SM(P) = SM(PUG).

Example. In an earlier example, the set of stable models
SM(P) = SM(PUGyqy) is essentially generated by the set of rules
{{a,b} — ~c. a<—c,~b. b«—c,~a {c}. } having no input atoms.

19

J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Modularity aspects

~

4. MODULARIZING WEAK EQUIVALENCEI

O The computation of SM(IP) for a module P is based on an input
generator G| that acts as the most general context for P.

0 The equivalence of modules can be addressed in the same way:
Do P and Q have the same stable models in all possible contexts?

0 The role of hidden atoms must be addressed at this point.

O The notion of visible equivalence stems from the modelling
philosophy of ASP as well as the user's perspective:

1. The number of stable models—that correspond to the
solutions of the problem—should be the same.

2. The visible parts of stable models—as observed by the user of
an answer set solver—should be the same.

J

© 2007 TKK / TCS

20

T-79.5102 / Autumn 2007 Modularity aspects

Visible/Modular Equivalence I

Definition. The visible and modular equivalence of program modules
P and Q, denoted by P =, Q and P =, Q, are defined as follows:

1. P=, Q if and only if Hb,(P) = Hby(Q) and there is a bijection
f: SM(P) — SM(Q) such that for all M € SM(P),

M Hby(P) = f(M) N Hby(Q).
2. P=, Q if and only if Hbj(P) = Hbi(Q) and P =, Q.

Theorem. Let P,Q, and R be program modules such that PUR and
QUR are defined. If P= Q, then PUR =, QUR.

Remark. The converse does not hold in general, i.e., PUR =, QUR
(equivalence in a specific context R) might well not imply P =p, Q.

4)

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Modularity aspects

Module [P Module Q:
{a,b} {a,b}
{a} —c. B a«—c,~d. dec ~a
{b} «— ~c. b ~C, ~& e« ~C,~bh.
{c} {c}

The modular equivalence of the modules P and Q illustrated above is
based on the following correspondence of stable models mediated by f:

SM(P): {c; {ac} {} {b}
fro] ! I
SM(Q): {d,c; {ac} {e} {b}

4 N

© 2007 TKK / TCS

21

22

T-79.5102 / Autumn 2007

4)

Modules having Enough Visible Atoms'

O In the worst case, the verification of =, and =, can be highly

Modularity aspects

complex (a counting problem is involved in general).
0 Hidden atoms tend to increase the complexity of the problem.

Definition. The hidden part of a module P= (R,1,O,H) is
Ph = (R, UO,H,0) where R, contains rules of R defining atoms in H
(the heads of rules are projected with respect to H).

Definition. A program module P= (R /1,0,H) has enough visible
atoms if and only if for each N C Hb,(P) =1UO, SM(P,,) = {M}
where MN (1UO) =N.

Remark. If Hby(IP) = 0, then the module P has enough visible atoms.

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

4 N

Translation-Based Verification I

O The translation-based method for the verification of weak

Modularity aspects

equivalence P = Q can be generalized for modules.

O The relation P =n Q coincides with Rp = Rq for the respective
rule sets, if Hb;(P) = Hb;(Q) = 0 and Hby(P) = Hbr(Q) = 0.

Theorem. Let P and Q be two compatible snodel s program modules
having the EVA property, i.e., enough visible atoms. Then

P=mQ iff SM(EQT(P,Q)) = SM(EQT(Q,P)) = 0.
Remarks. If Hbj(P) = | = Hb;(Q) # 0, then the stable models

EQT(P,Q) are determined using the respective input generator G;.
Moreover, if PUR and QUR are defined, then EQT(PUR,QUR) and

EQT(P,Q) LR have the same stable models (if any).)

© 2007 TKK / TCS

23

24

T-79.5102 / Autumn 2007 Modularity aspects

-

Tool Support I

The current snodel s system does not distinguish input atoms.

For now, the working definition is that input atoms have a name,
i.e., are visible, but do not have any defining rules.

The join LI operator of snmodel s programs has been implemented
as a linker called | pcat (option flag - mindicates modules).

$ Iparse p.Ip > p.sm Iparse gq.lp > g.sm

$ Ipcat -mp.smg.sm| igen | snodels O
In the pipeline, i gen adds an input generator to the program

The translator for equivalence checking, i.e., | peq, supports the
verification of modular equivalence (option flag - m).

$lpeq -mp.smqg.sm| Ipcat - r.sm| igen | snodels 1
$Ipeq -mqg.smp.sm| Ipcat - r.sm| igen | snodels 1

J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Modularity aspects

-

OBJECTIVES I

You are able to form a (positive) dependency graph for a given
logic program and exploit it in the computation of stable models.

You understand the limitations of stable model semantics in view
obtaining a compositional semantics for ASP.

You are able to relate the notion of modular equivalence with
weak and strong equivalence—as regards strength and abstract
properties such as congruence.

You are familiar with the basic tools for linking snodel s program
modules (I pcat) and verifying their equivalence (I peq).

© 2007 TKK / TCS

25

26

T-79.5102 / Autumn 2007 Modularity aspects

TIME TO PONDERI

Consider program modules P = (R |,0,H) for which the hidden part
Ph = (Ry, | UO,H,0) is essentially a stratified program, i.e., Ry is
stratified when reduced with respect to an interpretation N C 1UO.

O Prove that modules of this kind have enough visible atoms.

O Provide an example of a program module which is not stratified in
this sense but still has the EVA property.

4)

© 2007 TKK / TCS

27

