	T-79.5102 / Autumn 2007 Modularity aspects	1	T-79.5102 / Autumn 2007 Modularity aspects					
			Dependency Graphs					
	Lecture 10: Modularity Aspects		Definition. The <i>dependency graph</i> DG(P) of an smodels program P is $\langle Hb(P), \leq_1 \rangle$ where $b \leq_1 a$ holds for $a, b \in Hb(P)$ if and only if (i)					
			1. there is a basic rule $a \leftarrow B, \sim \! C \in P$,					
	Outline		2. there is a choice rule $\{A\} \leftarrow B, {\sim} C \in P$ such that $a \in A$,					
	► Stratification		3. there is a cardinality rule $a \leftarrow l\left\{B, \sim C ight\} \in P$, or					
	Module architecture for ASP		4. there is a weight rule $a \leftarrow l\left[B = w_B, {\sim}C = v_C ight] \in P$,					
	Compositional semantics		and $b \in B \cup C$, or					
	 Modularizing weak equivalence 		(ii) $b=a$ and $a\in A$ for some choice rule $\{A\}\leftarrow B, \sim C\in P.$					
			Remark. The <i>positive</i> dependency graph $DG^+(P)$ of P is defined analogously but using only positive dependencies.					
	© 2007 ТКК / ТСЅ	© 2007 TKK / TCS						
	T-79.5102 / Autumn 2007 Modularity aspects	2	T-79.5102 / Autumn 2007 Modularity aspects					
			Strongly Connected Components					
	 The number of stable models varies from program to program. 		 The overall dependency relation ≤ (⊆ Hb(P)²) is the reflexive and transitive closure (≤1)* of the immediate dependency relation ≤1. Thus a ≤ b holds if and only if there is a sequence a1,,an of atoms from Hb(P) such that n > 0 and a = a1≤1≤1an = b. Definition. A strongly connected component (SCC) of a dependency graph DG(P) = ⟨Hb(P),≤1⟩ is a maximal subset S of Hb(P) such that a ≤ b and b ≤ a for every a, b ∈ S. 					
	 This is quite natural given the modelling philosophy of ASP: a strict correspondence of answer sets and solutions is sought for. 							
	The semantics of a positive program P is uniquely determined by the least model LM(P). Likewise, the well-founded model WFM(P) assigns a unique set of literals with a normal program P.							
	These observations raise the question whether the existence of a unique stable model can be guaranteed under any circumstances.		Example. The dependency graph $DG(P)$ of the smodels program $a \leftarrow b \qquad b \leftarrow c \qquad c \leftarrow a$					
	➤ This is a property of <i>stratified programs</i> to be explored next.		$\{a,b,c\} \leftarrow d, \sim e. d \leftarrow \sim e. e \leftarrow \sim d.$					
	-							

4

Stratified Programs

- \blacktriangleright The strongly connected components of DG(P) determine sets of atoms which are recursively defined in terms of the rules of P.
- \blacktriangleright A dependency $c \leq_1 a$ in DG(P) is negative iff $\sim c$ appears in a negative body $\sim C$, or c = a appears in the head of a choice rule.

Definition. A program *P* is *stratified* iff the strongly connected components of DG(P) do not involve negative dependencies.

Proposition. A stratified smodels program *P* has a unique stable model M such that $M = WFM(P) \cap Hb(P)$.

Remark. The stratifiability of a program can be decided in linear time because the strongly connected components of DG(P) can be computed in time linear with respect to ||P|| (Tarjan's algorithm).

© 2007 TKK / TCS

Example

 $e \leftarrow a$.

Modularity aspects

T-79.5102 / Autumn 2007 Consider a normal program P consisting of the following rules: $a \leftarrow b, \sim c, \qquad b \leftarrow a, \sim d, \qquad c \leftarrow \sim e.$ $d \leftarrow e$. 1. The program is not stratified because DG(P) has a single SCC $S = Hb(P) = \{a, b, c, d, e\}$ involving negative dependencies. 2. If the last rule is dropped, the resulting program P' is stratified because DG(P') has SCCs $S_1 = \{e\}$, $S_2 = \{d\}$, $S_3 = \{c\}$, and $S_4 = \{a, b\}$ —not involving negative dependencies.

> **Remark.** The computation of the unique $M = \{c\} \in SM(P')$ can be done in a *modular* fashion using an order of SCCs which is compatible with DG(P)—such as S_1, S_2, S_3, S_4 : $\sim e_1 \sim d_1 c_1 \sim a_1 \sim b_2$.

2. MODULE ARCHITECTURE FOR ASP

- > Modular program development has a number of advantages:
 - 1. It enforces a good programming style by giving extra structure for programs (sets of rules in ASP).
 - 2. The semantics of programs is easier to grasp and potentially complex details can be hidden inside modules.
 - 3. The task of programming is naturally divided into subtasks that can be delegated for a team of programmers.
- \blacktriangleright In the sequel, a module architecture originally proposed for PROLOG programs [Gaifman and Shapiro, 1988], is tailored to the case of smodels programs under stable model semantics.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

```
Modularity aspects
```

8

7

Modules for smodels Programs

 \blacktriangleright Given a set of rules R, we write Hb(R) and Head(R) for the sets of atoms that appear in R and in the heads of rules of R, respectively.

Definition. A program module \mathbb{P} is a quadruple $\langle R, I, O, H \rangle$ where

- 1. I, O, and H are distinct sets input, output, and hidden atoms, respectively, and
- 2. R is a set of rules such that

 $\operatorname{Hb}(R) \subseteq \operatorname{Hb}(\mathbb{P}) = I \cup O \cup H$, and $\operatorname{Head}(R) \cap I = \emptyset$.

Example. Verify these requirements for an smodels program module

 $\mathbb{P} = \langle \{a \leftarrow \sim b, b \leftarrow \sim a, \sim c, \}, \{c\}, \{a\}, \{b\} \rangle$

10

Hebrand Bases and Interpretations

- ▶ The Herbrand base Hb(\mathbb{P}) of $\mathbb{P} = \langle R, I, O, H \rangle$ partitions into
 - 1. $Hb_i(\mathbb{P}) = I$ (input atoms),
 - 2. $\operatorname{Hb}_{0}(\mathbb{P}) = O$ (output atoms),
 - 3. $Hb_v(\mathbb{P}) = I \cup O$ (visible atoms), and
 - 4. $Hb_h(\mathbb{P}) = H$ (hidden atoms).
- ▶ An *interpretation* $M \subseteq Hb(\mathbb{P})$, which determines the true atoms of $Hb(\mathbb{P})$, has analogous projections with respect to these sets:
 - $M_{\rm i}$, $M_{\rm o}$, $M_{\rm v} = M_{\rm i} \cup M_{\rm o}$, and $M_{\rm h}$.

Modularity aspects

> The idea is that the visible part is accessible by other modules.

© 2007 TKK / TCS

Example: Graph Colouring

$\{\mathsf{r}(x), \mathsf{g}(x), \mathsf{b}(x) \mid 1 \le x \le n\}$ O_n : R_n : {{r(x), g(x), b(x)} \leftarrow node(x). | 1 \le x \le n} \cup {f \leftarrow node(x), \sim r(x), \sim g(x), \sim b(x), \sim f. | 1 < x < n} \cup {node(x) \leftarrow edge(x, y). | $1 \le x \le n$ } \cup {node(y) \leftarrow edge(x, y). | $1 \le x \le n$ } \cup {f $\leftarrow \mathsf{edge}(x, y), \mathsf{r}(x), \mathsf{r}(y), \sim \mathsf{f}. \mid 1 \le x \le y \le n$ } \cup {f $\leftarrow \mathsf{edge}(x, y), \mathsf{g}(x), \mathsf{g}(y), \sim \mathsf{f}. \mid 1 \le x < y \le n$ } \cup { $\mathbf{f} \leftarrow \mathsf{edge}(x, y), \mathbf{b}(x), \mathbf{b}(y), \sim \mathbf{f}. \mid 1 \le x < y \le n$ } I_n : {edge(*x*, *y*) | 1 ≤ *x* < *y* ≤ *n*}

 \implies Atoms in $H_n = \{f\} \cup \{\mathsf{node}(x) \mid 1 \le x \le n\}$ are hidden.

Interpreting Input Atoms within the Reduct

Definition. For a module $\mathbb{P} = \langle R, I, O, H \rangle$ and an interpretation $M \subseteq \operatorname{Hb}(P)$ determining the input M_i for \mathbb{P} , the reduct $R^{M,I}$ contains:

- 1. For each basic rule $a \leftarrow B$, $\sim C \in R$ satisfying $M \models (B \cap I) \cup \sim C$. the reduced rule $a \leftarrow (B \setminus I)$.
- 2. For each choice rule $\{A\} \leftarrow B, \sim C \in R$ satisfying $M \models (B \cap I) \cup \sim C$ and for each head atom $a \in A \cap M$, the rule $a \leftarrow (B \setminus I)$.
- 3. For each cardinality rule $a \leftarrow l \{B, \sim C\} \in R$, the reduced rule $a \leftarrow l' \{(B \setminus I)\}$ with $l' = \min(0, l - |B \cap I \cap M| - |C \setminus M|)$.
- 4. For each weight rule $a \leftarrow l[B = w_B, \sim C = v_C] \in R$, the reduced rule $a \leftarrow l'[(B \setminus I) = w_{(B \setminus I)}]$ with

$$l' = \min(0, l - \sum_{b \in B \cap I \cap M} w_b - \sum_{c \in (C \setminus M)} v_c).$$

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

```
Modularity aspects
```

12

Stable Semantics for Program Modules

Definition. An interpretation $M \subseteq Hb(\mathbb{P})$ is a *stable model* of a program module $\mathbb{P} = \langle R, I, O, H \rangle$ having an input interface $Hb_i(\mathbb{P})$ iff

$$M \setminus I = \mathrm{LM}(R^{M,I}).$$

Example. Verify the set of stable models

$$SM(\mathbb{P}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{b,c\}\}$$

for the smodels program module \mathbb{P} illustrated below:

	$\{a,b\}$	
$\{a,b\} \leftarrow \sim c.$	$a \leftarrow c, \sim b.$	$b \leftarrow c, \sim a.$
	$\{c\}$	

3. COMPOSITIONAL SEMANTICS

- The principle of *compositionality*: the semantics of an entire theory should be a function of the semantics of its components.
- > This is true for classical propositional theories:

 $CM(T_1 \cup T_2) = CM(T_1) \bowtie CM(T_2)$

where $CM(T) = \{M \subseteq Hb(P) \mid M \models T\}$ and the operator \bowtie which combines *compatible* models will be defined next.

- Unfortunately, logic programs under stable model semantics do not have an analogous property for arbitrary unions of programs.
- Thus more attention has to be paid to circumstances under which programs, or modules introduced so far, can be joined together.

© 2007 TKK / TCS

15

Composing Programs from Modules

➤ We say that $\mathbb{P}_1 = \langle R_1, I_1, O_1, H_1 \rangle$ and $\mathbb{P}_2 = \langle R_2, I_2, O_2, H_2 \rangle$ respect the module interface of each other if and only if

 $(I_1 \cup O_1 \cup H_1) \cap H_2 = \emptyset$, $(I_2 \cup O_2 \cup H_2) \cap H_1 = \emptyset$, and $O_1 \cap O_2 = \emptyset$.

Definition. The *composition* of program modules $\mathbb{P}_1 = \langle R_1, I_1, O_1, H_1 \rangle$ and $\mathbb{P}_2 = \langle R_2, I_2, O_2, H_2 \rangle$ respecting module interfaces of each other is

$$\mathbb{P}_1 \oplus \mathbb{P}_2 = \langle R_1 \cup R_2, (I_1 \setminus O_2) \cup (I_2 \setminus O_1), O_1 \cup O_2, H_1 \cup H_2 \rangle.$$

Example. Verify interface conditions for the following composition:

$\{a\}$		$\{b\}$		$\{a,b\}$
$a \leftarrow c. \ c \leftarrow \sim b.$	\oplus	$b \leftarrow \sim a$.	=	$a \leftarrow c. \ c \leftarrow \sim b. \ b \leftarrow \sim a.$
$\{b\}$		$\{a\}$		0

Joins of Program Modules

- \blacktriangleright In the preceding example, the key issue is that a and b are positively interdependent and hence false in the least model.
- > The compositionality of stable semantics is achieved if the creation of such dependencies is pre-empted in program composition.

Definition. Modules \mathbb{P}_1 and \mathbb{P}_2 , for which $\mathbb{P}_1 \oplus \mathbb{P}_2$ is defined, are mutually dependent if there is an SCC S in $DG^+(\mathbb{P}_1 \oplus \mathbb{P}_2)$ such that

 $S \cap \operatorname{Hb}_{o}(\mathbb{P}_{1}) \neq \emptyset$ and $S \cap \operatorname{Hb}_{o}(\mathbb{P}_{2}) \neq \emptyset$.

If there is no such S, we say that the *join* $\mathbb{P}_1 \sqcup \mathbb{P}_2 = \mathbb{P}_1 \oplus \mathbb{P}_2$ is defined.

Example. In the preceding example, the join is not defined because of the strongly connected component $S = \{a, b\}$ involved in the positive dependency graph $DG^+(\{a \leftarrow b, b \leftarrow a, \})$.

© 2007 TKK / TCS

Modularity aspects

 $\{a,b\}$

 $b \leftarrow \sim a$.

Ø

 $a \leftarrow \sim b$. $a \leftarrow b$.

18

Computing Stable Models for Module

- \blacktriangleright The definition of stable models for a program module \mathbb{P} covers all interpretations $M_{i} \subseteq Hb(\mathbb{P})$.
- \blacktriangleright The context of \mathbb{P} determines which of them come into effect.
- \blacktriangleright The set of stable models SM(\mathbb{P}) can be computed by attaching \mathbb{P} to a general context that creates all input interpretations for \mathbb{P} .

Proposition. Let $\mathbb{P} = \langle R, I, O, H \rangle$ be a program module and $\mathbb{G}_I = \langle \{\{I\}, \}, \emptyset, I, \emptyset \rangle$ the respective input generator. Then

$$\mathrm{SM}(\mathbb{P}) = \mathrm{SM}(\mathbb{P} \sqcup \mathbb{G}_I).$$

Example. In an earlier example, the set of stable models $SM(\mathbb{P}) = SM(\mathbb{P} \sqcup \mathbb{G}_{\{c\}})$ is essentially generated by the set of rules $\{\{a,b\} \leftarrow \sim c. \ a \leftarrow c, \sim b. \ b \leftarrow c, \sim a. \ \{c\}.\}$ having no input atoms.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Modularity aspects

20

4. MODULARIZING WEAK EQUIVALENCE

- \blacktriangleright The computation of SM(\mathbb{P}) for a module \mathbb{P} is based on an input generator \mathbb{G}_I that acts as the most general context for \mathbb{P} .
- ➤ The equivalence of modules can be addressed in the same way: Do \mathbb{P} and \mathbb{O} have the same stable models in all possible contexts?
- \blacktriangleright The role of hidden atoms must be addressed at this point.
- > The notion of *visible equivalence* stems from the modelling philosophy of ASP as well as the user's perspective:
 - 1. The number of stable models—that correspond to the solutions of the problem—should be the same.
 - 2. The visible parts of stable models—as observed by the user of an answer set solver-should be the same.

=

Definition. The *visible* and *modular* equivalence of program modules \mathbb{P} and \mathbb{Q} , denoted by $\mathbb{P} \equiv_v \mathbb{Q}$ and $\mathbb{P} \equiv_m \mathbb{Q}$, are defined as follows:

1. $\mathbb{P} \equiv_{v} \mathbb{Q}$ if and only if $Hb_{v}(\mathbb{P}) = Hb_{v}(\mathbb{Q})$ and there is a bijection $f: SM(\mathbb{P}) \to SM(\mathbb{Q})$ such that for all $M \in SM(\mathbb{P})$,

 $M \cap \operatorname{Hb}_{\operatorname{v}}(\mathbb{P}) = f(M) \cap \operatorname{Hb}_{\operatorname{v}}(\mathbb{Q}).$

 $2. \ \mathbb{P} \equiv_m \mathbb{Q} \text{ if and only if } Hb_i(\mathbb{P}) = Hb_i(\mathbb{Q}) \text{ and } \mathbb{P} \equiv_v \mathbb{Q}.$

Theorem. Let \mathbb{P}, \mathbb{Q} , and \mathbb{R} be program modules such that $\mathbb{P} \sqcup \mathbb{R}$ and $\mathbb{Q} \sqcup \mathbb{R}$ are defined. If $\mathbb{P} \equiv_m \mathbb{Q}$, then $\mathbb{P} \sqcup \mathbb{R} \equiv_m \mathbb{Q} \sqcup \mathbb{R}$.

Remark. The converse does not hold in general, i.e., $\mathbb{P} \sqcup \mathbb{R} \equiv_m \mathbb{Q} \sqcup \mathbb{R}$ (equivalence in a specific context \mathbb{R}) might well not imply $\mathbb{P} \equiv_m \mathbb{Q}$.

T-79.	5102 / Autumn 200	7	Modular	ity aspe	cts		
		E	kample				
	Module \mathbb{P} :		Ν	∕lodule	e Q:		
	$\{a,b\}$			$\{a, b$	}		
	$\{a\} \leftarrow c.$	_	$a \leftarrow c, \gamma$	~d. a	$l \leftarrow c, \sim$	<i>-a</i> .	
	$\{b\} \leftarrow \sim c.$	=m	$b \leftarrow \sim c, c$	$\sim e.$ e	$e \leftarrow \sim c,$	$\sim b.$	
	$\{c\}$			$\{c\}$			
The mo based o	dular equivalenc n the following o	e of the correspor	modules P ndence of s	and () table i	Q illustr models	ated a mediat	bove is ed by <i>f</i> :
	$\mathrm{SM}(\mathbb{P})$	$\{c\}$	$\{a,c\}$	{}	$\{b\}$		
	f	: ↓	\downarrow	\downarrow	\downarrow		
	$\mathrm{SM}(\mathbb{Q})$	$\{d,c\}$	$\{a,c\}$	$\{e\}$	$\{b\}$		

21 T-79.5102 / Autumn 2007 Modularity aspects Modules having Enough Visible Atoms \blacktriangleright In the worst case, the verification of \equiv_v and \equiv_m can be highly complex (a counting problem is involved in general). \blacktriangleright Hidden atoms tend to increase the complexity of the problem. **Definition.** The *hidden part* of a module $\mathbb{P} = \langle R, I, O, H \rangle$ is $\mathbb{P}_{h} = \langle R_{h}, I \cup O, H, \emptyset \rangle$ where R_{h} contains rules of R defining atoms in H (the heads of rules are projected with respect to H). **Definition.** A program module $\mathbb{P} = \langle R, I, O, H \rangle$ has enough visible atoms if and only if for each $N \subseteq Hb_v(\mathbb{P}) = I \cup O$, $SM(\mathbb{P}_h) = \{M\}$ where $M \cap (I \cup O) = N$. **Remark.** If $Hb_h(\mathbb{P}) = \emptyset$, then the module \mathbb{P} has enough visible atoms. © 2007 TKK / TCS T-79.5102 / Autumn 2007 Modularity aspects **Translation-Based Verification** > The translation-based method for the verification of weak equivalence $P \equiv Q$ can be generalized for modules. ▶ The relation $\mathbb{P} \equiv_{\mathrm{m}} \mathbb{Q}$ coincides with $R_P \equiv R_Q$ for the respective rule sets, if $Hb_i(\mathbb{P}) = Hb_i(\mathbb{Q}) = \emptyset$ and $Hb_h(\mathbb{P}) = Hb_h(\mathbb{Q}) = \emptyset$. **Theorem.** Let \mathbb{P} and \mathbb{Q} be two compatible smodels program modules having the EVA property, i.e., enough visible atoms. Then $\mathbb{P} \equiv_{\mathrm{m}} \mathbb{Q}$ iff $\mathrm{SM}(\mathrm{EQT}(\mathbb{P},\mathbb{Q})) = \mathrm{SM}(\mathrm{EQT}(\mathbb{Q},\mathbb{P})) = \emptyset$.

Remarks. If $Hb_i(\mathbb{P}) = I = Hb_i(\mathbb{Q}) \neq \emptyset$, then the stable models $EQT(\mathbb{P}, \mathbb{Q})$ are determined using the respective input generator \mathbb{G}_I .

Moreover, if $\mathbb{P} \sqcup \mathbb{R}$ and $\mathbb{Q} \sqcup \mathbb{R}$ are defined, then $EQT(\mathbb{P} \sqcup \mathbb{R}, \mathbb{Q} \sqcup \mathbb{R})$ and $EQT(\mathbb{P}, \mathbb{Q}) \sqcup \mathbb{R}$ have the same stable models (if any).

24

T-79.5102 / Autumn 2007

26

27

Tool Support

- ► The current smodels system does not distinguish input atoms.
- > For now, the working definition is that input atoms have a name, i.e., are visible, but do not have any defining rules.
- ➤ The join ⊔ operator of smodels programs has been implemented as a *linker* called lpcat (option flag -m indicates modules).
 - \$ lparse p.lp > p.sm; lparse q.lp > q.sm
 - \$ lpcat -m p.sm q.sm | iqen | smodels 0

In the pipeline, igen adds an input generator to the program

> The translator for equivalence checking, i.e., lpeq, supports the verification of modular equivalence (option flag -m).

\$ lpeq	-m	p.sm	q.sm	lpcat - r.sr	n	igen	smodels 1
\$ lpeq	-m	q.sm	p.sm	lpcat - r.sr	n	igen	smodels 1

Modularity aspects

© 2007 TKK / TCS

$\left(\right)$

OBJECTIVES

- \blacktriangleright You are able to form a (positive) dependency graph for a given logic program and exploit it in the computation of stable models.
- > You understand the limitations of stable model semantics in view obtaining a compositional semantics for ASP.
- > You are able to relate the notion of modular equivalence with weak and strong equivalence—as regards strength and *abstract* properties such as congruence.
- > You are familiar with the basic tools for linking smodels program modules (lpcat) and verifying their equivalence (lpeq).

Consider program modules $\mathbb{P} = \langle R, I, O, H \rangle$ for which the hidden part $\mathbb{P}_{h} = \langle R_{h}, I \cup O, H, \emptyset \rangle$ is essentially a stratified program, i.e., R_{h} is stratified when reduced with respect to an interpretation $N \subseteq I \cup O$.

- > Prove that modules of this kind have enough visible atoms.
- > Provide an example of a program module which is not stratified in this sense but still has the EVA property.

© 2007 TKK / TCS