T-79.5102 / Autumn 2007 Equivalence Checking

-

1.
2.

o o &

Lecture 9: Equivalence Checking'

Motivation

Outline

Notions of equivalence
Complexity analysis
Translation-based verification
Tool for equivalence testing

Experimental results

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Equivalence Checking

1. MOTIVATION I

The program development in ASP resembles that in conventional
programming languages: the final program solving a particular
problem is obtained after a number of changes to the first version.

Sometimes the aim is to change the set of answer sets whereas
some steps aim at a better performance.

A basic question is whether the different versions of a program
yield the same answer sets—corresponding to solutions.

Logic programs P and Q are considered to be (weakly) equivalent,
denoted by P = Q, if and only if SM(P) = SM(Q).

We are mainly interested in the verification of P = Q for programs
P and Q expressed in the input language of the snodel s solver.

T-79.5102 / Autumn 2007

4)

The Language of Interest'

O The current smodel s solver supports internally four types of

Equivalence Checking

propositional rules:
1. normal/basic rules a <« by, ... bp,~C1,...,~Cn,
2. cardinality rules a«— | {by,... by, ~C1,...,~Cn} with | >0,
3. choice rules {ay,...,an} < b1,...,bn,~C1,...,~Cm, and
4. weight rules
a«—I[b1=wi,...,.bhp=Wn,~C1 =V1,...,~Cm= Vn)
where weights | >0, wy >0,...,.wy >0, and v1 >0,...,v, > 0.

O The front-end of the solver, | par se, supports an extended syntax
that is translated into rules of the kinds listed above.

J

© 2007 TKK / TCS

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

4 N

Review of the Stable Model Semantics.

Definition. For an snodel s program P and an interpretation
M C Hb(P), the reduct PM contains

Equivalence Checking

O a normal rule a« by,...,by <= there is a basic rule (1.) in P
such that M |= {~cCy,...,~Cm}, or there is a choice rule (3.) in P
such that a€ {a,...,an}, M =a, and M = {~c1,...,~Cn}.

O a cardinality rule a<1"{by,...,bn} <= there is a cardinality rule
(2.) in Pand I’=max(0,l — [{~ci | M = ~ci}|),

O a weight rule a«—1"[by =wi,...,bh =w,| <= there is a weight
rule (4.) in P and I" = max(0,| — Tmpng; Vj)-

Definition. An interpretation M C Hb(P) is a stable model of P
— M= LM(PM), i.e., the (unique) least model of pPM.

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Equivalence Checking

4)

2. NOTIONS OF EQUIVALENCEI

0 The basic notions of equivalence that have been proposed for logic

programs are weak/ordinary equivalence and strong equivalence.

O The second equivalence relation takes the potential contexts of
programs being compared into account.

Definition. snodel s programs P and Q are (weakly) equivalent,
denoted by P = Q, if and only if SM(P) = SM(Q).

Definition. snodel s programs P and Q are strongly equivalent,
denoted by P =5Q, if and only if for all snodel s programs R,
PUR= QUR ie., SM(PUR) = SM(QUR).

Proposition. For all snodel s programs P and Q, P =5 Q implies

P = Q, but not vice versa, and PUR=s QUR (congruence).
\ J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Equivalence Checking

4 N

Consider the weak/strong equivalence of following pairs of programs:

P Q P=Q? | P=Q?
a<—a yes yes
a+— ~h. a. yes no
a—~b b—~a {a,b}. no no
a< b,~h. yes yes
a—bh a—~h a. yes no
a+— ~a. a+—h b+—~a yes no

Provide a witnessing context R for the cases in which P #5Q holds!

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Equivalence Checking

Which SE-interpretations are the other SE-models of P and Q7

4)

Characterization of Strong Equivalence'

O Given an snodel s program P, an SE-interpretation is a pair
(N, M) of ordinary interpretations such that N C M C Hb(P).

O An SE-interpretation (N,M) for P is an SE-model of P if and only
if Mj=Pand N =PM.

Theorem. For snmodel s programs P and Q, it holds that P=5Q if and
only if SE(P) = SE(Q), i.e., P and Q have the same SE-models.

Example. Consider P={a«b. a«< ~b. } and Q={a } from the
previous slide. The fact that P #5Q is witnessed by

1. the context R={b«—a. }, and

2. an SE-model (0, {a,b}) which is not an SE-model of Q.

J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Equivalence Checking

-

_

Definition.

3. COMPLEXITY ANALYSISI

0 The question is whether it is computationally feasible to verify
P = Q (or P=5Q) for two programs under consideration.

0 To ease complexity analysis, we distinguish the respective
implication problems for = and =5 as follows.

1. The language WIMPL is the set of pairs (P,Q) of finite snodel s
programs such that SM(P) C SM(Q).

2. The language SIMPL is the set of pairs (P, Q) of finite snodel s
programs such that SE(P) C SE(Q).

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Equivalence Checking

-

Complexity Analysis of WIMPLI

Theorem. The complement of WIMPL is in NP and
NP-hard/complete, i.e., WIMPL is coNP-complete.

Proof. 1. It is possible to construct an NTM which

(i) chooses a model candidate M C Hb(P) for P in (P,Q),

(ii) computes LM(PM) in time polynomial with respect to ||P||,

(iii) rejects (P,Q) if M # LM(PM),

(iv) computes LM(QY) in time polynomial with respect to ||Q||, and
(v) rejects (P,Q) if M =LM(PM) and accepts it otherwise.

2. For a finite normal program P,

_

PeSTABLE < R(P)=(P{a—~a })¢&WIMPL. O

J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Equivalence Checking

-

Membership of SIMPL I

Theorem. The complement of SIMPL is in NP and
NP-hard/complete, i.e., SIMPL is cONP-complete.

Proof. It is possible to construct an NTM which

(i) chooses an SE-interpretation (N, M) for P in the input (P,Q),
(ii) rejects (P,Q) if M [~ P or N [~ PV,
(iii) accepts (P,Q) if M [~ Q, or N [~ QM, and rejects it otherwise.

0 The checks M}~ P, N PM, M [~ Q, and N [~ QY are feasible in
time polynomial with respect to ||P|| +]|Q]|.

0 The NTM described above has an accepting computation on

(PQ) < 3I(N,M) € SE(P) such that (N,M) & SE(Q). O

© 2007 TKK / TCS

10

T-79.5102 / Autumn 2007

4)

Hardness of SIMPL I

Theorem. The complement of SIMPL is NP-hard/complete, i.e.,
SIMPL is coNP-hard /complete.

Equivalence Checking

Proof. Consider a set of clauses Sand a query atom ¢ € Hb(S).
1. An atom a€ Hb(S) is translated into Ry(a) using f & Hb(S):
a—~a~f. a—~a~f. f—aa~f.
2. For a clause I1V... VI, €S Ry(11V...Vly) is the positive rule
ht (1) < h=(I2),...,h (Ip).
where h*(a) =a, h*(-a)=3a, h~(a)=3a, and h™(—-a) =a.
Let us define R(S,¢) = (Ri(Hb(S)) URx(S), Ri(Hb(S)) UR:(S) UR:(C)).

Then, for a finite set of clauses Sand a query atom c € Hb(S):
SEc¢ < R(Sc) € SIMPL. O

J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

4 N

Deciding Equivalence'

1. The language WEQ is the set of pairs (P,Q) of finite snodel s
programs such that SM(P) = SM(Q).

Equivalence Checking

Definition.

2. The language SEQ is the set of pairs (P,Q) of finite srodel s
programs such that SE(P) = SE(Q).

Theorem. Both WEQ and SEQ are cONP-complete.

Proof. 1. WEQ is the intersection of two CONP-complete languages,
WIMPL and {(Q,P) | (P,Q) € WIMPL}.

2. The reduction R(P) = (P, {a« ~a. }) presented above applies:
P e STABLE < R(P) ¢ WEQ.

The case of SEQ is proved analogously. a
- J

© 2007 TKK / TCS

11

12

T-79.5102 / Autumn 2007 Equivalence Checking

-

3. TRANSLATION-BASED VERIFICATIONI

O The idea is to combine two snodel s programs P and Q into a
single program EQT(P,Q) having a stable model if and only if

M € SM(P) such that M & SM(Q).
0 The translation-based verification of P = Q counts on
P=Q < EQT(P,Q) and EQT(Q,P) have no stable models.
O It is assumed (without loss of generality) that Hb(P) = Hb(Q).

O A number of new atoms not appearing in Hb(P) are needed:

1. an atom a* for each atom a < Hb(Q) to represent QM with
respect to a potential counter-example M, and

2. atoms d and f for additional control.

_

~

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Equivalence Checking

-

Translation for Equivalence Checking'

Definition. The translation EQT(P,Q) =

PUQU{d«—a,~a" d—a",~a |acHbQ}uU{f—~d~f. }
where Q* contains

1. a*—Dbj,... by, ~Cq,...,~Cm for each basic rule (1.) in Q,

2. a —I{b%,... b5, ~cC1,...,~Cn} for each cardinality rule (2.) in Q,

3. & —Dbj,....b;,&,~cC1,...,~Cny for each choice rule (3.) in Q and
head atom & € {ay,...,an}, and

4. a* —|[bj =w,...,bf =Wn,~C1 = Vni1,...,~Cm = Vi for each
weight rule (4.) in Q.

© 2007 TKK / TCS

13

14

T-79.5102 / Autumn 2007 Equivalence Checking

-

Observations about EQT(P,Q)

O The translation EQT(P,Q) is designed to capture pairs (P,Q) of
snodel s programs such that (P,Q) ¢ WIMPL.
O To this end, the parts of EQT(P,Q) play the following roles:
1. The rules of P capture a stable model M € SM(P).
2. The rules of Q* express LM(QM) using Hb(Q)*.
3. Rules of the forms d «+ a,~a* and d «— a*,~a check whether
M and LM(QM) differ with respect to some a < Hb(Q).

4. The rule f + ~d,~f excludes cases where there is no
difference, i.e., M # LM(QM) is enforced.

Theorem. For any smodel s programs P and Q, EQT(P,Q) has a
stable model <= 3IM € SM(P) such that M ¢ SM(Q).

_

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Equivalence Checking

-

O Let us check whether the following programs are equivalent:

P: {ab}. Q a«<~b
a«— ~a,~h. b~ ~a
O The translation EQT(P,Q) consists of
{a,b}. a«— ~a~h. a « ~bh b* «— ~a.
d—a*,~a d—b*~b. d<a~a*. d«< b~b"
f— ~d,~f.

O There is N={a,b,d} € SM(EQT(P,Q)) giving rise to a counter
model M = N Hb(P) € SM(P) so that P # Q.

0 The reduct EQT(PQN={a. b. d—a. d—b. }.

© 2007 TKK / TCS

15

16

T-79.5102 / Autumn 2007 Equivalence Checking

-

Using the Translation'

Corollary. For any snodel s programs P and Q,
P=Q < SM(EQT(P,Q)) =0 and SM(EQT(Q,P)) =0.
Some observations and remarks follow:

0 Thus, in case of a positive outcome, the verification of P=Q

involves a two-way failing search for counter-examples.

O smodel s programs that contain minimization statements are not
directly covered by the translation-based method.

O But if P and Q are free of optimization statements and P = Q,
then they remain equivalent if extended by the same statements.

J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Equivalence Checking

-

5. TOOL FOR EQUIVALENCE TESTINGI

O There is a translator called | peq which implements the
translation-based verification method described above.

O | peq has been designed to produce EQT(P,Q) for programs
created by | parse. This may fail if too many atoms are hidden.

O The existence of potential counter-examples for P = Q can be
checked using the snodel s solver for the search.
— No special-purpose search engines need to be developed.
O The Linux binaries of | peq and dl peq are available at

http://ww.tcs. hut.fi/Software/l peq

© 2007 TKK / TCS

17

18

T-79.5102 / Autumn 2007 Equivalence Checking

-

_

How to Use | peq'

O The weak equivalence of two snodel s programs, first produced
with | par se, is checked by issuing the following commands:
$ I parse pl.lp > pl.sm
$ I parse p2.1p > p2.sm
$ Ipeq pl.smp2.sm| snmodels 1
$ Ipeq p2.smpl.sm| snodels 1

O It is also possible to verify classical equivalence (option flag - ¢)
and strong equivalence (flag - s) and in this order.

O Programs for tests involving classical and strong equivalence must
be produced with | parse’s command line option - dal | .

J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Equivalence Checking

-

_

6. EXPERIMENTAL RESULTS I

O The verification method based on the translation EQT(P, Q) has
been compared with a cross-checking approach.

O In this nai ve approach, the inclusion SM(P) C SM(Q) is verified
using the following algorithm:

function Naive(P,Q): boolean;
var M: atom set;
for M in SM(P)

if M £ LM(QM) then return L;
return T;

O The snodel s solver is used to enumerate stable models whereas
the stability check is done using a particular tool (t est sm).

O A two-way search of counter-examples was performed in any case.

© 2007 TKK / TCS

19

20

T-79.5102 / Autumn 2007 Equivalence Checking

-

Equivalent Programs for the n-Queens Problem'

O The first formulation Qy is due to Niemeld [1999].

0 The second formulation Qf, is a variant of Qp that uses choice
rules and cardinality rules in addition to basic rules.

n stable tavg (s) tavg (s) choices choices |Qnl+ |EQT(Qn, Qh)|+
models | peq naive | peq nai ve |Qh |EQT(Qn.Qh)|

1 1 0.000 0.080 o] 7 28

2 o 0.000 0.051 o o 28 130

3 o 0.003 0.051 o o 124 384

4 2 0.019 0.120 o 2 300 884

5 10 0.042 0.454 5 18 600 1718

6 4 0.136 0.259 16 18 1058 2074

7 40 0.516 2.340 40 84 1708 4740

8 22 2.967 6.721 163 253 2584 7104

9 352 17.316 32.032 615 955 3720 10154

10 724 99.866 90.694 2613 3127 5150 13978

11 2680 617.579 451.410 11939 13662 6908 18664

~

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Equivalence Checking

-

Time (s)

Random 3-SAT Instances.

O In this experiment, random 3-SAT instances S are created with a

fixed clauses-to-variables ratio £ = 4 (phase transition at 4.3).

O Instances are encoded as logic programs P in terms of basic rules.

O The idea is to test P= P’ where P’ is a variant of P obtained by

dropping one random rule from P.

1000 T T 10000
naive avg —-o—-
Ipeq avg —x—

— T
naive avg —-6—-
Ipeq avg —x—

100
1000
10 £ i

1E pra— 100

0.1 ¢

\
\
&
X
.
Number of choice points

0.01 k|

0.001 L L L L L L L 1 L L L L L L L
1 15 20 25 30 35 10 145 50 10 15 20 25 30 35 40 45 50

Number of variables Number of variables

© 2007 TKK / TCS

21

22

T-79.5102 / Autumn 2007 Equivalence Checking

4)

Observations I

O In many cases, the number of choice points and the time needed

for computations is less than in the naive cross-checking approach.

O If programs being compared are likely to have no/few stable
models, then the naive approach becomes superior.

0 The use of hidden atoms tends to increase the complexity of
equivalence checking.

Example. Consider the following smodel s programs:

P. a« ~b. b+ ~a C«+— ~d. d«— ~c.

Q {ac}.
It is clear that P 2 Q but this is not the case if b and d are hidden.

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Equivalence Checking

4 N

OBJECTIVES '

O You are familiar with two fundamental notions of equivalence that

have been proposed for classes of programs used in ASP.

O You know the basic complexity results about verifying
weak/strong equivalence in the case of normal/snodel s programs.

O You understand the architecture of translation-based equivalence
checking and its potential over naive cross-checking of answer sets.

O You have tried to use | peq in practice to see whether two
programs are equivalent—or differ in an intended way.

© 2007 TKK / TCS

23

24

T-79.5102 / Autumn 2007 Equivalence Checking

-

_

TIME TO PONDERI

using a new atom, say f, and a basic rule of the form

.[:Hb]_,...,bﬂ7 NCl,...,NCm,Nf.

form described above (without f).

cover constraints.

O How about the translation-based verification method, i.e.,

In this lecture, we have assumed that basic rules have a head, i.e.,
each constraint < by, ...,bp, ~C1, ...,Cm must be expressed indirectly

Consider an extension of snodel s programs with constraints of the

O Describe changes to the definition of stable models in order to

in

which way constraints can be incorporated into EQT(P,Q)?

© 2007 TKK / TCS

25

