

2. NOTIONS OF EQUIVALENCE

- The basic notions of equivalence that have been proposed for logic programs are weak/ordinary equivalence and strong equivalence.
- The second equivalence relation takes the potential contexts of programs being compared into account.

Definition. smodels programs P and Q are *(weakly) equivalent*, denoted by $P \equiv Q$, if and only if SM(P) = SM(Q).

Definition. smodels programs *P* and *Q* are strongly equivalent, denoted by $P \equiv_{s} Q$, if and only if for all smodels programs *R*, $P \cup R \equiv Q \cup R$, i.e., $SM(P \cup R) = SM(Q \cup R)$.

Proposition. For all smodels programs P and Q, $P \equiv_{s} Q$ implies $P \equiv Q$, but not vice versa, and $P \cup R \equiv_{s} Q \cup R$ (congruence).

© 2007 TKK / TCS

ExamplesConsider the weak/strong equivalence of following pairs of prog P Q $P \equiv Q$? $P \equiv s$ $a \leftarrow a$. yes yes ye $a \leftarrow \sim b$. a . yes ye $a \leftarrow \sim b$. $b \leftarrow \sim a$. $\{a,b\}$. no $a \leftarrow b, \sim b$. yes yes yes								
PQ $P \equiv Q$? $P \equiv s$ $a \leftarrow a$. yes yes yes $a \leftarrow \sim b$. a . yes no $a \leftarrow \sim b$. $b \leftarrow \sim a$. $\{a,b\}$. no $a \leftarrow b, \sim b$. yes yes yes	Examples							
PQ $P \equiv Q$? $P \equiv s$ $a \leftarrow a$.yesyes $a \leftarrow \sim b$. a .yes $a \leftarrow \sim b$. $b \leftarrow \sim a$. $\{a,b\}$. $a \leftarrow b, \sim b$.yesyes	ram							
$a \leftarrow a.$ yesyes $a \leftarrow \sim b.$ $a.$ yesno $a \leftarrow \sim b.$ $b \leftarrow \sim a.$ $\{a,b\}.$ nono $a \leftarrow b, \sim b.$ yesyesyes	Q?							
$a \leftarrow \sim b.$ $a.$ yesno $a \leftarrow \sim b.$ $b \leftarrow \sim a.$ $\{a,b\}.$ nono $a \leftarrow b, \sim b.$ yesyesyes	5							
$a \leftarrow \sim b.$ $b \leftarrow \sim a.$ $\{a, b\}.$ nono $a \leftarrow b, \sim b.$ yesyesyes)							
$a \leftarrow b, \sim b.$ yes ye)							
	5							
$a \leftarrow b. \ a \leftarrow \sim b.$ $a.$ yes no)							
$a \leftarrow \sim a.$ $a \leftarrow b.$ $b \leftarrow \sim a.$ yes not)							

Provide a witnessing context R for the cases in which $P \not\equiv_{s} Q$ holds!

7

Characterization of Strong Equivalence

- ➤ Given an smodels program P, an SE-interpretation is a pair $\langle N, M \rangle$ of ordinary interpretations such that $N \subseteq M \subseteq Hb(P)$.
- ➤ An SE-interpretation $\langle N, M \rangle$ for *P* is an *SE-model* of *P* if and only if $M \models P$ and $N \models P^M$.

Theorem. For smodels programs P and Q, it holds that $P \equiv_s Q$ if and only if SE(P) = SE(Q), i.e., P and Q have the same SE-models.

Example. Consider $P = \{a \leftarrow b. \ a \leftarrow \neg b. \}$ and $Q = \{a. \}$ from the previous slide. The fact that $P \not\equiv_s Q$ is witnessed by

1. the context $R = \{b \leftarrow a. \}$, and

2. an SE-model $\langle \emptyset, \{a, b\} \rangle$ which is not an SE-model of Q.

Which SE-interpretations are the other SE-models of P and Q?

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Equivalence Checking

3. COMPLEXITY ANALYSIS

- The question is whether it is computationally feasible to verify $P \equiv Q$ (or $P \equiv_s Q$) for two programs under consideration.
- ➤ To ease complexity analysis, we distinguish the respective *implication* problems for \equiv and \equiv_s as follows.

Definition.

- 1. The language WIMPL is the set of pairs $\langle P, Q \rangle$ of finite smodels programs such that $SM(P) \subseteq SM(Q)$.
- 2. The language SIMPL is the set of pairs $\langle P, Q \rangle$ of finite smodels programs such that $SE(P) \subseteq SE(Q)$.

- **Proof.** It is possible to construct an NTM which
- (i) chooses an SE-interpretation $\langle N, M \rangle$ for P in the input $\langle P, Q \rangle$.
- (ii) rejects $\langle P, O \rangle$ if $M \not\models P$ or $N \not\models P^M$.
- (iii) accepts $\langle P, Q \rangle$ if $M \not\models Q$, or $N \not\models Q^M$, and rejects it otherwise.
- ▶ The checks $M \nvDash P$, $N \nvDash P^M$, $M \nvDash O$, and $N \nvDash O^M$ are feasible in time polynomial with respect to ||P|| + ||Q||
- > The NTM described above has an accepting computation on $\langle P, Q \rangle \iff \exists \langle N, M \rangle \in \operatorname{SE}(P) \text{ such that } \langle N, M \rangle \notin \operatorname{SE}(Q).$

Let us define $R(S,c) = \langle R_1(\operatorname{Hb}(S)) \cup R_2(S), R_1(\operatorname{Hb}(S)) \cup R_2(S) \cup R_2(c) \rangle$.

12 1. The language WEQ is the set of pairs $\langle P, O \rangle$ of finite smodels programs such that SM(P) = SM(Q)2. The language SEQ is the set of pairs $\langle P, Q \rangle$ of finite smodels programs such that SE(P) = SE(Q). **Theorem.** Both WEQ and SEQ are coNP-complete. **Proof.** 1. WEQ is the intersection of two coNP-complete languages, WIMPL and $\{\langle Q, P \rangle \mid \langle P, Q \rangle \in WIMPL\}$. 2. The reduction $R(P) = \langle P, \{a \leftarrow \neg a. \} \rangle$ presented above applies: $P \in \mathsf{STABLE} \iff R(P) \notin \mathsf{WEQ}$ The case of SEQ is proved analogously.

3. TRANSLATION-BASED VERIFICATION

- ➤ The idea is to combine two smodels programs *P* and *Q* into a single program EQT(P,Q) having a stable model if and only if $\exists M \in SM(P)$ such that $M \notin SM(Q)$.
- The translation-based verification of $P \equiv Q$ counts on $P \equiv Q \iff EQT(P, Q)$ and EQT(Q, P) have no stable models.
- ▶ It is assumed (without loss of generality) that Hb(P) = Hb(Q).
- \blacktriangleright A number of *new atoms* not appearing in Hb(P) are needed:
 - 1. an atom a^{\star} for each atom $a \in Hb(Q)$ to represent Q^M with respect to a potential counter-example M, and
 - 2. atoms d and f for additional control.

© 2007 TKK / TCS

Observations about EQT(P,Q)

- ➤ The translation EQT(P, Q) is designed to capture pairs $\langle P, Q \rangle$ of smodels programs such that $\langle P, Q \rangle \notin WIMPL$.
- > To this end, the parts of EQT(P,Q) play the following roles:
 - 1. The rules of P capture a stable model $M \in SM(P)$.
 - 2. The rules of Q^* express $LM(Q^M)$ using $Hb(Q)^*$.
 - 3. Rules of the forms $d \leftarrow a, \sim a^*$ and $d \leftarrow a^*, \sim a$ check whether M and $LM(Q^M)$ differ with respect to some $a \in Hb(Q)$.
 - 4. The rule $f \leftarrow \sim d, \sim f$ excludes cases where there is no difference, i.e., $M \neq \text{LM}(Q^M)$ is enforced.

Theorem. For any smodels programs P and Q, EQT(P,Q) has a stable model $\iff \exists M \in SM(P)$ such that $M \notin SM(Q)$.

© 2007 TKK / TCS

Using the Translation

Corollary. For any smodels programs P and Q,

$$P \equiv Q \iff \mathrm{SM}(\mathrm{EQT}(P,Q)) = \emptyset \text{ and } \mathrm{SM}(\mathrm{EQT}(Q,P)) = \emptyset.$$

Some observations and remarks follow:

- ➤ Thus, in case of a positive outcome, the verification of P ≡ Q involves a two-way failing search for counter-examples.
- smodels programs that contain minimization statements are not directly covered by the translation-based method.
- ▶ But if P and Q are free of optimization statements and $P \equiv Q$, then they remain equivalent if extended by the same statements.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Equivalence Checking

5. TOOL FOR EQUIVALENCE TESTING

- There is a translator called lpeq which implements the translation-based verification method described above.
- ➤ lpeq has been designed to produce EQT(P,Q) for programs created by lparse. This may fail if too many atoms are hidden.
- ➤ The existence of potential counter-examples for P = Q can be checked using the smodels solver for the search.
 - \implies No special-purpose search engines need to be developed.
- The Linux binaries of lpeq and dlpeq are available at http://www.tcs.hut.fi/Software/lpeq

How to Use lpeg

- ➤ The *weak equivalence* of two smodels programs, first produced with lparse, is checked by issuing the following commands:
 - \$ lparse p1.lp > p1.sm
 - \$ lparse p2.lp > p2.sm
 - \$ lpeq p1.sm p2.sm | smodels 1
 - \$ lpeq p2.sm p1.sm | smodels 1
- It is also possible to verify classical equivalence (option flag -c) and strong equivalence (flag -s) and in this order.
- Programs for tests involving classical and strong equivalence must be produced with lparse's command line option -dall.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Equivalence Checking

19

6. EXPERIMENTAL RESULTS

- > The verification method based on the translation EQT(P,Q) has been compared with a cross-checking approach.
- In this naive approach, the inclusion SM(P) ⊆ SM(Q) is verified using the following algorithm:

function Naive(P,Q): boolean; var M: atom set; for M in SM(P)if $M \neq LM(Q^M)$ then return \bot ;

ret urn ⊤;

- ➤ The smodels solver is used to enumerate stable models whereas the stability check is done using a particular tool (testsm).
- ➤ A two-way search of counter-examples was performed in any case.

Equivalent Programs for the *n*-Queens Problem

- > The first formulation Q_n is due to Niemelä [1999].
- The second formulation Q'_n is a variant of Q_n that uses choice rules and cardinality rules in addition to basic rules.

п	stable	tavg (s)	tavg (s)	choices	choices	$ Q_n +$	$ EQT(Q_n,Q'_n) +$
	models	lpeq	naive	lpeq	naive	$ Q'_n $	$ EQT(Q_n, Q'_n) $
1	1	0.000	0.080	0	0	7	28
2	0	0.000	0.051	0	0	28	130
3	0	0.003	0.051	0	0	124	384
4	2	0.019	0.120	0	2	300	884
5	10	0.042	0.454	5	18	600	1718
6	4	0.136	0.259	16	18	1058	2974
7	40	0.516	2.340	40	84	1708	4740
8	92	2.967	6.721	163	253	2584	7104
9	352	17.316	32.032	615	955	3720	10154
10	724	99.866	90.694	2613	3127	5150	13978
11	2680	617.579	451.410	11939	13662	6908	18664
		•	•	•			·

© 2007 TKK / TCS

- ➤ In many cases, the number of choice points and the time needed for computations is less than in the naive cross-checking approach.
- If programs being compared are likely to have no/few stable models, then the naive approach becomes superior.
- The use of *hidden* atoms tends to increase the complexity of equivalence checking.

Example. Consider the following smodels programs:

It is clear that $P \not\equiv Q$ but this is not the case if b and d are hidden.

© 2007 TKK / TCS

TIME TO PONDER

In this lecture, we have assumed that basic rules have a head, i.e., each constraint $\leftarrow b_1, \ldots, b_n, \sim c_1, \ldots, c_m$ must be expressed indirectly using a new atom, say f, and a basic rule of the form

 $f \leftarrow b_1, \ldots, b_n, \sim c_1, \ldots, \sim c_m, \sim f$.

Consider an extension of smodels programs with constraints of the form described above (without f).

- Describe changes to the definition of stable models in order to cover constraints.
- ► How about the translation-based verification method, i.e., in which way constraints can be incorporated into EQT(P,Q)?

© 2007 TKK / TCS