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Leture 8: Implementation Tehniques

Outline1. Dowling-Gallier algorithm2. Full sets3. Searh method for stable models4. Implementing approximations5. Branh&bound algorithm
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1. DOWLING-GALLIER ALGORITHM

➤ W. Dowling and J. Gallier [1984℄ presented their method originallyfor testing the satis�ability of sets of Horn lauses.

➤ Due to lose interonnetion of Horn lauses with rules andonstraints, we present the method for positive programs diretly.
➤ The iteration sequene TP ↑ 0, TP ↑ 1, . . . provides a basi methodfor omputing LM(P) = lfp(TP) for a positive program P.
➤ The least �xpoint, for whih TP ↑ n = TP ↑ n−1 holds, is reahedin at most n = |Hb(P)|+1 appliations of TP.
➤ The time omplexity is of O(|Hb(P)|× ||P||) as for any M ⊆Hb(P),the time required to ompute TP(M) depends linearly on ||P||.
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Data strutures

➤ The iteration sequene of the operator TP an be implementedmore e�iently using ertain preomputed data strutures.
➤ The following data strutures are used for a positive program P:1. An array occurs[a] of sets of rules indexed by atoms a ∈ Hb(P)and preomputed as {r | r = h← B ∈ P and a ∈ B} for eah a.2. An array count[r] of integers indexed by rules r ∈ P. The initialvalue for a rule r = h← B is the number |B| of body atoms.3. A set of atoms M ⊆ Hb(P) initialized as TP ↑ 1 = TP( /0).

➤ The exeution of the funtion LeastModel(M) given on the nextslide will gradually extend M to LM(P).
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Algorithm for Computing LM(P)

funtion LeastModel(M : atom set): atom set;var Q: atom set; a: atom; r: rule;

Q := M;while Q 6= /0 do

a := pick(Q);

Q := Q\{a};for r in occurs[a] do

count[r] := count[r]−1;if count[r] = 0 and Head(r) 6∈M then do

Q := Q∪{Head(r)}; M := M∪{Head(r)};donedonedone

LeastModel := M;
© 2007 TKK / TCS
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Example. Consider a positive program P having the following rules:

r0 : c. r1 : d. r2 : e← c, d. r3 : f ← c. r4 : g← g, f . r5 : h← d, f .The algorithm omputes LM(P) = {c,d,e, f ,h} as follows:1. M := {c,d}2. Q := {c,d}3. a := c4. Q := {d}5. r := r26. count[r2] := 17. r := r38. count[r3] := 09. Q := {d, f}10. M := {c,d, f}

11. a := d12. Q := { f}13. r := r214. count[r2] := 015. Q := { f ,e}16. M := {c,d,e, f}17. r := r518. count[r5] := 119. a := f20. Q := {e}

21. r := r422. count[r4] := 123. r := r524. count[r5] := 025. Q := {e,h}26. M := {c,d,e, f ,h}27. a := e28. Q := {h}29. a := h30. Q := /0
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Observations about the Algorithm

➤ The operation of the while-loop is governed by invariants1. Q⊆M ⊆ LM(P).2. ∀r = a← B ∈ P: count[r] = |B\ (M \Q)|.3. ∀a ∈ Hb(P): (a ∈M ⇐⇒ ∃r = a← B ∈ P: count[r] = 0).
➤ The progress of the while-loop is witnessed by |LM(P)\M|+ |Q|.
➤ The umulative work done by the for-loop is proportional to thenumber of positive body literals in the rules of P.
➤ Assuming onstant osts for set operations and arithmetis, thealgorithm runs in time linear with respet to ||P||.
➤ The implementation of Q determines the way how omputationproeeds: e.g., breadth-�rst (LIFO) or depth-�rst (FIFO).© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Implementation Tehniques 7

2. FULL SETS

➤ The set of atoms a ∈ Hb(P) that appear in the negative bodyliterals of a normal program P is denoted by NBA(P).
➤ The members of NBA(P) a�et the redut PM play a major rolewhen the stable models M of a normal program P are determined.

➤ The stable models M ∈ SM(P) an be haraterized in terms ofsets of negative default literals ∼a based on atoms a ∈ NBA(P).

➤ The least model assoiated with a normal logi program P and aset of negative default literals F is LM(PF) where

PF = {a← B | a← B,∼C ∈ P and ∼C ⊆ F}.De�nition. A set F of negative default literals is P-full if and only iffor all a ∈ NBA(P), the literal ∼a ∈ F ⇐⇒ a 6∈ LM(PF).
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Properties of Full Sets

Theorem. Let P be a normal program and F a subset of ∼NBA(P).1. If F is P-full, then M = LM(PF) ∈ SM(P).2. If M ∈ SM(P), then F = {∼a | a ∈ NBA(P)\M} is P-full and

M = LM(PF).Example. The set of atoms NBA(P) = {a,b,d} for a normal program

P = {a← c,∼b. b←∼a. c←∼d. d←∼a. }.1. The set of literals F1 = {∼b,∼d} is P-full, sine PF1 = {a← c. c. }and LM(PF1) = {a,c}. Thus M = {a,c} is stable.2. But e.g. F2 = {∼b} is not P-full beause PF2 = {a← c. },

LM(PF2) = /0, and, for instane, ∼a 6∈ F2.
© 2007 TKK / TCS
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3. SEARCH METHOD FOR STABLE MODELS

➤ The goal is to ompute�as e�iently as possible�one or severalstable models for a normal program P given as input.

➤ The haraterization of stable models based on full sets suggeststhat the searh spae essentially onsists of subsets of NBA(P).

➤ Following the general branh&bound searh strategy, we graduallybuild a set L of default literals that onstrains stable models beingomputed and try to prune the searh spae.1. Assumptions about models are made one by one.2. At eah point of the searh spae, stable models that satisfy allthe assumptions introdued so far (the set L) are approximated.3. If a on�it is found, the searh baktraks, and the searh forother models takes plae similarly, if a model is found.© 2007 TKK / TCS
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Approximation Criteria

➤ Stable models being omputed for a normal program P arespei�ed in terms of a set of default literals L over Hb(P):1. If a ∈ L, then a ∈M for stable models M being omputed.2. If ∼a ∈ L, then a 6∈M for stable models M being omputed(∼a ∈ F holds for the respetive full sets F).

➤ Suh a relationship between a stable model M ∈ SM(P) and a setof default literals an be understood as a form of ompatibility.Example. Consider the normal logi program P =

{a←∼b. b←∼a. c←∼d. d←∼c. e←∼ f . f ←∼e. }.Now, for instane, the set of default literals L = {a,∼c} is ompatiblewith stable models M1 = {a,d,e} and M2 = {a,d, f} in SM(P).© 2007 TKK / TCS
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Lower and Upper Bounds
➤ A lower bound LB(P,L)⊇ L is a set of literals whih is ompatiblewith any stable model M ∈ SM(P) ompatible with L.
➤ An upper bound UB(P,L)⊆ Hb(P) is a set of atoms that ontainsevery M ∈ SM(P) ompatible with L.
➤ An approximation Expand(P,L) is the least set of literals L′ whihontains L and is losed in the following senses:(i) If a default literal l ∈ LB(P,L′), then l ∈ L′.(ii) If an atom a 6∈ UB(P,L′), then ∼a ∈ L′.
➤ The approximation Expand(P,L) an be obtained by omputinglower and upper bounds iteratively and applying (i) and (ii).
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4. IMPLEMENTING APPROXIMATIONS

➤ For the sake of e�ieny, it is important that the bounds LB(P,L)and UB(P,L) an be omputed in linear time.

➤ The resulting approximation at any point of the searh spae Lshould be at least as aurate as WFM(P), i.e., WFM(P)⊆ L.

➤ Assumptions embodied in L should be taken fully into aount.De�nition. For a normal logi program P and a set of default literals

L over Hb(P), the set of ative rules of P given L is

ActR(P,L) = {a← B,∼C ∈ P | L∩ (∼B∪C) = /0}.Remark. The bodies of rules in ActR(P,L) are not falsi�ed by L!

© 2007 TKK / TCS
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Lower BoundDe�nition. The lower bound LB(P,L) is the least set of literals L′whih ontains L and is losed under the following priniples:P1: If a← B,∼C ∈ ActR(P,L′) and B∪∼C ⊆ L′, then a ∈ L′.P2: If b 6= a for every rule a← B,∼C in ActR(P,L′), then ∼b ∈ L′.P3: If a ∈ L′ is the head of exatly one rule a← B,∼C in ActR(P,L′),then the body B∪∼C ⊆ L′.P4: If ∼a ∈ L′, a rule a← l1, . . . , ln ∈ ActR(P,L′), and

{l1, . . . , li−i, li+1, . . . , ln} ⊆ L′, then the omplement li ∈ L′.P5: If for some atom a ∈ Hb(P) both a ∈ L′ and ∼a ∈ L′, then allliterals over Hb(P) belong to L′.
© 2007 TKK / TCS
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Example

Let us ompute L1 = LB(P1,{∼b}) and L2 = LB(P1,{b}) for P1:

r1 : a←∼b. r2 : c← a. r3 : b← a,∼c,∼d. r4 : d← c,∼e.

L1 ActR(P1,L1)

∼b r1, r2, r3, r4

a P1 r1, r2, r3, r4

c P1 r1, r2, r4

∼e P2 r1, r2, r4

d P1 r1, r2, r4

L2 ActR(P1,L2)

b r2, r3, r4

a,∼c,∼d P3 r2, r3

c P1 r2all P5
=⇒ The approximation Expand(P1,{∼b}) = {∼b,a,c,∼e,d}determines a stable model M = {a,c,d}. The set Expand(P1,{b})ontains all literals. Thus there is no M ∈ SM(P) suh that b ∈M.© 2007 TKK / TCS
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Upper Bound

De�nition. The upper bound UB(P,L) = LM(ActR(P,L) /0) where theredut ActR(P,L) /0 is ActR(P,L) with all negative literals removed.Example. Consider the following normal program P2:
a←∼b. b←∼a. c←∼a. d←∼c. e←∼d.Verify the following upper bounds for P2:1. UB(P2, /0) = {a,b,c,d,e}.

=⇒ Expand(P2, /0) = /0 beause also LB(P2, /0) = /0 holds.2. UB(P2,{a}) = LM({a←∼b. d←∼c. e←∼e. } /0) = {a,d,e}.3. UB(P2,{∼a}) = {a,b,c,d,e}.
© 2007 TKK / TCS

AB
T-79.5102 / Autumn 2007 Implementation Tehniques 16

Further Examples

Example. Let us ompute approximations Expand(P2,{a}) and

Expand(P2,{∼a}) for the preeding program P2:

a←∼b. b←∼a. c←∼a. d←∼c. e←∼d.1. LB(P2,{a}) = {a,∼b,∼c,d,∼e}= Expand(P2,{a}).2. LB(P2,{∼a}) = {∼a,b,c,∼d,e}= Expand(P2,{∼a}).

Example. Let us then analyze a normal program P3 having two rules:

a←∼b. b← b.Now LB(P3, /0) = /0 but UB(P3, /0) = {a} so that ∼b ∈ Expand(P3, /0).

=⇒ Expand(P3, /0) = {a,∼b} beause LB(P3,{∼b}) = {a,∼b}.

© 2007 TKK / TCS
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Implementing Bounds

➤ The lower and upper bounds an be implemented as linear timealgorithms that resemble the Dowling-Gallier presented above.

➤ The auray of Expand is at least as good as that of thewell-founded model. In fat, we have Expand(P, /0) = WFM(P).

➤ However, assumptions about stable models to ompute, a set ofdefault literals L 6⊆WFM(P), make Expand(P,L) more aurate.Example. For the normal program P4 onsisting of

a←∼b. b←∼a. a← b.we obtain Expand(P4, /0) = /0 and Expand(P4,{b}) = {a,b,∼a,∼b}.But the on�it is not deteted for P5 = P4∪{b. }: WFM(P) = {a,b}.
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5. BRANCH&BOUND ALGORITHM

➤ The purpose of the funtion Smodels(P,L) is to hek whether Phas a stable model M whih is ompatible with L.

➤ The underlying algorithm is based on a number of primitives:1. The funtion Expand(P,L) returns a tightened approximationof stable models that are ompatible with L.2. The funtion Conflict(P,L) heks whether the approximation
L obtained so far is ontraditory ({a,∼a} ⊆ L for some a).3. The funtion Covered(P,L) heks whether the approximation
L obtained so far overs all atoms of NBA(P), i.e., for eah
a ∈ NBA(P), either a ∈ L or ∼a ∈ L.4. The funtion Choose(P,L) implements the searh heuristis,i.e., it piks the next literal for branhing.© 2007 TKK / TCS
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The smodels Algorithm

funtion Smodels(P,L): boolean;var A: literal set; l: literal;

A := Expand(P,L);if Conflict(P,A) then return ⊥;if Covered(P,A) then return ⊤;
l := Choose(P,A);if Smodels(P,A∪{l}) thenreturn ⊤;else return Smodels(P,A∪{l});Remarks. Reall the omplements a =∼a and ∼a = a.The sets of literals L and A (the new approximation) an berepresented in spae linear with respet to |Hb(P)| ≤ ||P||.
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AB
T-79.5102 / Autumn 2007 Implementation Tehniques 20

Example: Cautious Reasoning

Let us show 〈P,e〉 ∈ CAUTIOUS for the following normal program P:

a←∼b. b←∼a. c← a,∼b. c← b,∼a. d←∼c. e←∼d.The non-existene of ounter-examples is showed using L = {∼e}:

∼e

d

∼c

a

∼b

c
×

∼a

b

c
×Remark. Only one hoie was neessary although |NBA(P)|= 4.© 2007 TKK / TCS
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Example: Searh for Stable Models

Let us searh the stable models of the following normal program P:

a← c,∼b. b←∼a. c←∼d. d←∼a.In the beginning, the set of assumptions L = /0 for this task:

a

∼d

c

∼b

∼a

b

d

∼c

=⇒ The sets F1 = {∼b,∼d} and F2 = {∼a,∼c} are P-full�givingrise to stable models M1 = {a,c} and M2 = {b,d} in SM(P).
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Searh Heuristis

➤ In the look ahead searh strategy, re�ned approximations

L1 = Expand(P,L∪{a}) and L2 = Expand(P,L∪{∼a})are omputed for eah a ∈ NBA(P) not overed by L.

➤ These an be used to reursively re�ne the approximation L:1. If L1 ontains ∼a (a on�it), then ∼a is added to L.2. If L2 ontains a (a on�it), then a is added to L.The searh at L an be stopped if both a and ∼a are added.
➤ If both L1 and L2 are onsistent, they provide an estimate of thesize of the remaining searh spae.

➤ The searh heuristis of the smodels solver selets for branhing aliteral expeted to reate the smallest searh spae.© 2007 TKK / TCS
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OBJECTIVES

➤ You understand the operation of the Dowling-Gallier-algorithmand are able to simulate it for a given normal program.
➤ You are familiar with the branh&bound algorithm that underliesthe smodels system.

➤ Given a smallish normal program, you are able to determine itsstable models and to reason about them (e.g., autiously).

➤ You know at least some approximation priniples and how toexploit them e�iently in the omputation of stable models.
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TIME TO PONDERReall the tehnique for removing a hoie rule

{a1, . . . ,ah}← b1, . . . ,bn,∼c1, . . . ,∼cmby translating it into 2h+1 rules

a1← b,∼a1. . . . ah← b,∼ah.

a1←∼a1. . . . ah←∼ah.

b← b1, . . . ,bn,∼c1, . . . ,∼cm.Given this interonnetion, onsider the appliability of the priniplesP1�P4 involved in the lower bound LB(P,L) to hoie rules.
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