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Le
ture 8: Implementation Te
hniques

Outline1. Dowling-Gallier algorithm2. Full sets3. Sear
h method for stable models4. Implementing approximations5. Bran
h&bound algorithm
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1. DOWLING-GALLIER ALGORITHM

➤ W. Dowling and J. Gallier [1984℄ presented their method originallyfor testing the satis�ability of sets of Horn 
lauses.

➤ Due to 
lose inter
onne
tion of Horn 
lauses with rules and
onstraints, we present the method for positive programs dire
tly.
➤ The iteration sequen
e TP ↑ 0, TP ↑ 1, . . . provides a basi
 methodfor 
omputing LM(P) = lfp(TP) for a positive program P.
➤ The least �xpoint, for whi
h TP ↑ n = TP ↑ n−1 holds, is rea
hedin at most n = |Hb(P)|+1 appli
ations of TP.
➤ The time 
omplexity is of O(|Hb(P)|× ||P||) as for any M ⊆Hb(P),the time required to 
ompute TP(M) depends linearly on ||P||.
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Data stru
tures

➤ The iteration sequen
e of the operator TP 
an be implementedmore e�
iently using 
ertain pre
omputed data stru
tures.
➤ The following data stru
tures are used for a positive program P:1. An array occurs[a] of sets of rules indexed by atoms a ∈ Hb(P)and pre
omputed as {r | r = h← B ∈ P and a ∈ B} for ea
h a.2. An array count[r] of integers indexed by rules r ∈ P. The initialvalue for a rule r = h← B is the number |B| of body atoms.3. A set of atoms M ⊆ Hb(P) initialized as TP ↑ 1 = TP( /0).

➤ The exe
ution of the fun
tion LeastModel(M) given on the nextslide will gradually extend M to LM(P).
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Algorithm for Computing LM(P)

fun
tion LeastModel(M : atom set): atom set;var Q: atom set; a: atom; r: rule;

Q := M;while Q 6= /0 do

a := pick(Q);

Q := Q\{a};for r in occurs[a] do

count[r] := count[r]−1;if count[r] = 0 and Head(r) 6∈M then do

Q := Q∪{Head(r)}; M := M∪{Head(r)};donedonedone

LeastModel := M;
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Example. Consider a positive program P having the following rules:

r0 : c. r1 : d. r2 : e← c, d. r3 : f ← c. r4 : g← g, f . r5 : h← d, f .The algorithm 
omputes LM(P) = {c,d,e, f ,h} as follows:1. M := {c,d}2. Q := {c,d}3. a := c4. Q := {d}5. r := r26. count[r2] := 17. r := r38. count[r3] := 09. Q := {d, f}10. M := {c,d, f}

11. a := d12. Q := { f}13. r := r214. count[r2] := 015. Q := { f ,e}16. M := {c,d,e, f}17. r := r518. count[r5] := 119. a := f20. Q := {e}

21. r := r422. count[r4] := 123. r := r524. count[r5] := 025. Q := {e,h}26. M := {c,d,e, f ,h}27. a := e28. Q := {h}29. a := h30. Q := /0
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Observations about the Algorithm

➤ The operation of the while-loop is governed by invariants1. Q⊆M ⊆ LM(P).2. ∀r = a← B ∈ P: count[r] = |B\ (M \Q)|.3. ∀a ∈ Hb(P): (a ∈M ⇐⇒ ∃r = a← B ∈ P: count[r] = 0).
➤ The progress of the while-loop is witnessed by |LM(P)\M|+ |Q|.
➤ The 
umulative work done by the for-loop is proportional to thenumber of positive body literals in the rules of P.
➤ Assuming 
onstant 
osts for set operations and arithmeti
s, thealgorithm runs in time linear with respe
t to ||P||.
➤ The implementation of Q determines the way how 
omputationpro
eeds: e.g., breadth-�rst (LIFO) or depth-�rst (FIFO).
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2. FULL SETS

➤ The set of atoms a ∈ Hb(P) that appear in the negative bodyliterals of a normal program P is denoted by NBA(P).
➤ The members of NBA(P) a�e
t the redu
t PM play a major rolewhen the stable models M of a normal program P are determined.

➤ The stable models M ∈ SM(P) 
an be 
hara
terized in terms ofsets of negative default literals ∼a based on atoms a ∈ NBA(P).

➤ The least model asso
iated with a normal logi
 program P and aset of negative default literals F is LM(PF) where

PF = {a← B | a← B,∼C ∈ P and ∼C ⊆ F}.De�nition. A set F of negative default literals is P-full if and only iffor all a ∈ NBA(P), the literal ∼a ∈ F ⇐⇒ a 6∈ LM(PF).
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Properties of Full Sets

Theorem. Let P be a normal program and F a subset of ∼NBA(P).1. If F is P-full, then M = LM(PF) ∈ SM(P).2. If M ∈ SM(P), then F = {∼a | a ∈ NBA(P)\M} is P-full and

M = LM(PF).Example. The set of atoms NBA(P) = {a,b,d} for a normal program

P = {a← c,∼b. b←∼a. c←∼d. d←∼a. }.1. The set of literals F1 = {∼b,∼d} is P-full, sin
e PF1 = {a← c. c. }and LM(PF1) = {a,c}. Thus M = {a,c} is stable.2. But e.g. F2 = {∼b} is not P-full be
ause PF2 = {a← c. },

LM(PF2) = /0, and, for instan
e, ∼a 6∈ F2.
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3. SEARCH METHOD FOR STABLE MODELS

➤ The goal is to 
ompute�as e�
iently as possible�one or severalstable models for a normal program P given as input.

➤ The 
hara
terization of stable models based on full sets suggeststhat the sear
h spa
e essentially 
onsists of subsets of NBA(P).

➤ Following the general bran
h&bound sear
h strategy, we graduallybuild a set L of default literals that 
onstrains stable models being
omputed and try to prune the sear
h spa
e.1. Assumptions about models are made one by one.2. At ea
h point of the sear
h spa
e, stable models that satisfy allthe assumptions introdu
ed so far (the set L) are approximated.3. If a 
on�i
t is found, the sear
h ba
ktra
ks, and the sear
h forother models takes pla
e similarly, if a model is found.
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Approximation Criteria

➤ Stable models being 
omputed for a normal program P arespe
i�ed in terms of a set of default literals L over Hb(P):1. If a ∈ L, then a ∈M for stable models M being 
omputed.2. If ∼a ∈ L, then a 6∈M for stable models M being 
omputed(∼a ∈ F holds for the respe
tive full sets F).

➤ Su
h a relationship between a stable model M ∈ SM(P) and a setof default literals 
an be understood as a form of 
ompatibility.Example. Consider the normal logi
 program P =

{a←∼b. b←∼a. c←∼d. d←∼c. e←∼ f . f ←∼e. }.Now, for instan
e, the set of default literals L = {a,∼c} is 
ompatiblewith stable models M1 = {a,d,e} and M2 = {a,d, f} in SM(P).
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Lower and Upper Bounds
➤ A lower bound LB(P,L)⊇ L is a set of literals whi
h is 
ompatiblewith any stable model M ∈ SM(P) 
ompatible with L.
➤ An upper bound UB(P,L)⊆ Hb(P) is a set of atoms that 
ontainsevery M ∈ SM(P) 
ompatible with L.
➤ An approximation Expand(P,L) is the least set of literals L′ whi
h
ontains L and is 
losed in the following senses:(i) If a default literal l ∈ LB(P,L′), then l ∈ L′.(ii) If an atom a 6∈ UB(P,L′), then ∼a ∈ L′.
➤ The approximation Expand(P,L) 
an be obtained by 
omputinglower and upper bounds iteratively and applying (i) and (ii).
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4. IMPLEMENTING APPROXIMATIONS

➤ For the sake of e�
ien
y, it is important that the bounds LB(P,L)and UB(P,L) 
an be 
omputed in linear time.

➤ The resulting approximation at any point of the sear
h spa
e Lshould be at least as a

urate as WFM(P), i.e., WFM(P)⊆ L.

➤ Assumptions embodied in L should be taken fully into a

ount.De�nition. For a normal logi
 program P and a set of default literals

L over Hb(P), the set of a
tive rules of P given L is

ActR(P,L) = {a← B,∼C ∈ P | L∩ (∼B∪C) = /0}.Remark. The bodies of rules in ActR(P,L) are not falsi�ed by L!
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Lower BoundDe�nition. The lower bound LB(P,L) is the least set of literals L′whi
h 
ontains L and is 
losed under the following prin
iples:P1: If a← B,∼C ∈ ActR(P,L′) and B∪∼C ⊆ L′, then a ∈ L′.P2: If b 6= a for every rule a← B,∼C in ActR(P,L′), then ∼b ∈ L′.P3: If a ∈ L′ is the head of exa
tly one rule a← B,∼C in ActR(P,L′),then the body B∪∼C ⊆ L′.P4: If ∼a ∈ L′, a rule a← l1, . . . , ln ∈ ActR(P,L′), and

{l1, . . . , li−i, li+1, . . . , ln} ⊆ L′, then the 
omplement li ∈ L′.P5: If for some atom a ∈ Hb(P) both a ∈ L′ and ∼a ∈ L′, then allliterals over Hb(P) belong to L′.
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Example

Let us 
ompute L1 = LB(P1,{∼b}) and L2 = LB(P1,{b}) for P1:

r1 : a←∼b. r2 : c← a. r3 : b← a,∼c,∼d. r4 : d← c,∼e.

L1 ActR(P1,L1)

∼b r1, r2, r3, r4

a P1 r1, r2, r3, r4

c P1 r1, r2, r4

∼e P2 r1, r2, r4

d P1 r1, r2, r4

L2 ActR(P1,L2)

b r2, r3, r4

a,∼c,∼d P3 r2, r3

c P1 r2all P5
=⇒ The approximation Expand(P1,{∼b}) = {∼b,a,c,∼e,d}determines a stable model M = {a,c,d}. The set Expand(P1,{b})
ontains all literals. Thus there is no M ∈ SM(P) su
h that b ∈M.
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Upper Bound

De�nition. The upper bound UB(P,L) = LM(ActR(P,L) /0) where theredu
t ActR(P,L) /0 is ActR(P,L) with all negative literals removed.Example. Consider the following normal program P2:
a←∼b. b←∼a. c←∼a. d←∼c. e←∼d.Verify the following upper bounds for P2:1. UB(P2, /0) = {a,b,c,d,e}.

=⇒ Expand(P2, /0) = /0 be
ause also LB(P2, /0) = /0 holds.2. UB(P2,{a}) = LM({a←∼b. d←∼c. e←∼e. } /0) = {a,d,e}.3. UB(P2,{∼a}) = {a,b,c,d,e}.
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Further Examples

Example. Let us 
ompute approximations Expand(P2,{a}) and

Expand(P2,{∼a}) for the pre
eding program P2:

a←∼b. b←∼a. c←∼a. d←∼c. e←∼d.1. LB(P2,{a}) = {a,∼b,∼c,d,∼e}= Expand(P2,{a}).2. LB(P2,{∼a}) = {∼a,b,c,∼d,e}= Expand(P2,{∼a}).

Example. Let us then analyze a normal program P3 having two rules:

a←∼b. b← b.Now LB(P3, /0) = /0 but UB(P3, /0) = {a} so that ∼b ∈ Expand(P3, /0).

=⇒ Expand(P3, /0) = {a,∼b} be
ause LB(P3,{∼b}) = {a,∼b}.
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Implementing Bounds

➤ The lower and upper bounds 
an be implemented as linear timealgorithms that resemble the Dowling-Gallier presented above.

➤ The a

ura
y of Expand is at least as good as that of thewell-founded model. In fa
t, we have Expand(P, /0) = WFM(P).

➤ However, assumptions about stable models to 
ompute, a set ofdefault literals L 6⊆WFM(P), make Expand(P,L) more a

urate.Example. For the normal program P4 
onsisting of

a←∼b. b←∼a. a← b.we obtain Expand(P4, /0) = /0 and Expand(P4,{b}) = {a,b,∼a,∼b}.But the 
on�i
t is not dete
ted for P5 = P4∪{b. }: WFM(P) = {a,b}.
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5. BRANCH&BOUND ALGORITHM

➤ The purpose of the fun
tion Smodels(P,L) is to 
he
k whether Phas a stable model M whi
h is 
ompatible with L.

➤ The underlying algorithm is based on a number of primitives:1. The fun
tion Expand(P,L) returns a tightened approximationof stable models that are 
ompatible with L.2. The fun
tion Conflict(P,L) 
he
ks whether the approximation
L obtained so far is 
ontradi
tory ({a,∼a} ⊆ L for some a).3. The fun
tion Covered(P,L) 
he
ks whether the approximation
L obtained so far 
overs all atoms of NBA(P), i.e., for ea
h
a ∈ NBA(P), either a ∈ L or ∼a ∈ L.4. The fun
tion Choose(P,L) implements the sear
h heuristi
s,i.e., it pi
ks the next literal for bran
hing.
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The smodels Algorithm

fun
tion Smodels(P,L): boolean;var A: literal set; l: literal;

A := Expand(P,L);if Conflict(P,A) then return ⊥;if Covered(P,A) then return ⊤;
l := Choose(P,A);if Smodels(P,A∪{l}) thenreturn ⊤;else return Smodels(P,A∪{l});Remarks. Re
all the 
omplements a =∼a and ∼a = a.The sets of literals L and A (the new approximation) 
an berepresented in spa
e linear with respe
t to |Hb(P)| ≤ ||P||.
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Example: Cautious Reasoning

Let us show 〈P,e〉 ∈ CAUTIOUS for the following normal program P:

a←∼b. b←∼a. c← a,∼b. c← b,∼a. d←∼c. e←∼d.The non-existen
e of 
ounter-examples is showed using L = {∼e}:

∼e

d

∼c

a

∼b

c
×

∼a

b

c
×Remark. Only one 
hoi
e was ne
essary although |NBA(P)|= 4.
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Example: Sear
h for Stable Models

Let us sear
h the stable models of the following normal program P:

a← c,∼b. b←∼a. c←∼d. d←∼a.In the beginning, the set of assumptions L = /0 for this task:

a

∼d

c

∼b

∼a

b

d

∼c

=⇒ The sets F1 = {∼b,∼d} and F2 = {∼a,∼c} are P-full�givingrise to stable models M1 = {a,c} and M2 = {b,d} in SM(P).
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Sear
h Heuristi
s

➤ In the look ahead sear
h strategy, re�ned approximations

L1 = Expand(P,L∪{a}) and L2 = Expand(P,L∪{∼a})are 
omputed for ea
h a ∈ NBA(P) not 
overed by L.

➤ These 
an be used to re
ursively re�ne the approximation L:1. If L1 
ontains ∼a (a 
on�i
t), then ∼a is added to L.2. If L2 
ontains a (a 
on�i
t), then a is added to L.The sear
h at L 
an be stopped if both a and ∼a are added.
➤ If both L1 and L2 are 
onsistent, they provide an estimate of thesize of the remaining sear
h spa
e.

➤ The sear
h heuristi
s of the smodels solver sele
ts for bran
hing aliteral expe
ted to 
reate the smallest sear
h spa
e.
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OBJECTIVES

➤ You understand the operation of the Dowling-Gallier-algorithmand are able to simulate it for a given normal program.
➤ You are familiar with the bran
h&bound algorithm that underliesthe smodels system.

➤ Given a smallish normal program, you are able to determine itsstable models and to reason about them (e.g., 
autiously).

➤ You know at least some approximation prin
iples and how toexploit them e�
iently in the 
omputation of stable models.
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TIME TO PONDERRe
all the te
hnique for removing a 
hoi
e rule

{a1, . . . ,ah}← b1, . . . ,bn,∼c1, . . . ,∼cmby translating it into 2h+1 rules

a1← b,∼a1. . . . ah← b,∼ah.

a1←∼a1. . . . ah←∼ah.

b← b1, . . . ,bn,∼c1, . . . ,∼cm.Given this inter
onne
tion, 
onsider the appli
ability of the prin
iplesP1�P4 involved in the lower bound LB(P,L) to 
hoi
e rules.
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