	1 T-79.5102 / Autumn 2007 Implementation Techniques
Lecture 8: Implementation Techniques Dutline 1. Dowling-Gallier algorithm 2. Full sets 3. Search method for stable models 4. Implementing approximations 5. Branch&bound algorithm	 1 T-79.5102 / Autumn 2007 Implementation Techniques Data structures The iteration sequence of the operator T_P can be implemented more efficiently using certain precomputed data structures. The following data structures are used for a positive program P 1. An array occurs[a] of sets of rules indexed by atoms a ∈ Hb(and precomputed as {r r = h ← B ∈ P and a ∈ B} for each 2. An array count[r] of integers indexed by rules r ∈ P. The ini value for a rule r = h ← B is the number B of body atoms. 3. A set of atoms M ⊆ Hb(P) initialized as T_P ↑ 1 = T_P(0). The execution of the function LeastModel(M) given on the nex slide will gradually extend M to LM(P).
 © 2007 ТКК / TCS	© 2007 ТКК / TCS
 T-79.5102 / Autumn 2007 Implementation Techniques 1. DOWLING-GALLIER ALGORITHM W. Dowling and J. Gallier [1984] presented their method originally for testing the satisfiability of sets of Horn clauses. Due to close interconnection of Horn clauses with rules and constraints, we present the method for positive programs directly. The iteration sequence T_P ↑ 0, T_P ↑ 1, provides a basic method for computing LM(P) = Ifp(T_P) for a positive program P. The least fixpoint, for which T_P ↑ n = T_P ↑ n − 1 holds, is reached in the method is the satisfication of the satisficat	2 T-79.5102 / Autum 2007 Implementation Techniques Algorithm for Computing LM(P) function LeastModel(M : atom set): atom set; var Q : atom set; a : atom; r : rule; Q := M; while $Q \neq 0$ do a := pick(Q); $Q := Q \setminus \{a\}$; for r in occurs[a] do count[r] := count[r] - 1; if $count[r] := 0$ and $Head(r) \notin M$ then do $Q := Q \cup \{Head(r)\}$; $M := M \cup \{Head(r)\}$;

3

4

Example. Consider a positive program <i>P</i> having the following rules:						
$r_0:c.$ $r_1:d.$ $r_2:e \leftarrow$	$-c, d.$ $r_3: f \leftarrow c.$ r_4	$: g \leftarrow g, f. r_5 : h \leftarrow d, f.$				
The algorithm computes $\operatorname{LM}(P) = \{c, d, e, f, h\}$ as follows:						
1. $M := \{c, d\}$	11. $a := d$	21. $r := r_4$				
2. $Q := \{c, d\}$	12. $Q := \{f\}$	22. $count[r_4] := 1$				
3. $a := c$	13. $r := r_2$	23. $r := r_5$				
4. $Q := \{d\}$	14. $count[r_2] := 0$	24. $count[r_5] := 0$				
5 $r := r_2$	15. $Q := \{f, e\}$	25. $Q := \{e, h\}$				
6 count $[r_2] := 1$	16. $M := \{c, d, e, f\}$	26. $M := \{c, d, e, f, h\}$				
7. $r := r_3$	17. $r := r_5$	27. $a := e$				
8 count $[r_3] := 0$	18. $count[r_5] := 1$	28. $Q := \{h\}$				
9. $Q := \{d, f\}$	19. $a := f$	29. $a := h$				
10. $M := \{c, d, f\}$	20. $Q := \{e\}$	30. $Q := \emptyset$				

© 2007 TKK / TCS

Implementation Techniques

- > Assuming constant costs for set operations and arithmetics, the algorithm runs in time linear with respect to ||P||.
- \blacktriangleright The implementation of Q determines the way how computation proceeds: e.g., breadth-first (LIFO) or depth-first (FIFO).

7

- \blacktriangleright The set of atoms $a \in \operatorname{Hb}(P)$ that appear in the negative body literals of a normal program P is denoted by NBA(P).
- \blacktriangleright The members of NBA(P) affect the reduct P^M play a major role when the stable models M of a normal program P are determined.
- \blacktriangleright The stable models $M \in SM(P)$ can be characterized in terms of sets of *negative default literals* $\sim a$ based on atoms $a \in NBA(P)$.
- \blacktriangleright The least model associated with a normal logic program P and a set of negative default literals F is $LM(P_F)$ where

$$P_F = \{a \leftarrow B \mid a \leftarrow B, \sim C \in P \text{ and } \sim C \subseteq F\}.$$

Definition. A set F of negative default literals is P-full if and only if for all $a \in NBA(P)$, the literal $\sim a \in F \iff a \notin LM(P_F)$.

© 2007 TKK / TCS

3. SEARCH METHOD FOR STABLE MODELS

- The goal is to compute—as efficiently as possible—one or several stable models for a normal program P given as input.
- ➤ The characterization of stable models based on full sets suggests that the search space essentially consists of subsets of NBA(P).
- ➤ Following the general *branch&bound* search strategy, we gradually build a set L of default literals that constrains stable models being computed and try to prune the search space.
 - 1. Assumptions about models are made one by one.
 - 2. At each point of the search space, stable models that satisfy all the assumptions introduced so far (the set L) are approximated.
 - 3. If a conflict is found, the search backtracks, and the search for other models takes place similarly, if a model is found.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Implementation Techniques

Approximation Criteria

- ➤ Stable models being computed for a normal program *P* are specified in terms of a set of default literals *L* over Hb(*P*):
 - 1. If $a \in L$, then $a \in M$ for stable models M being computed.
 - 2. If $\sim a \in L$, then $a \notin M$ for stable models M being computed $(\sim a \in F \text{ holds for the respective full sets } F)$.
- Such a relationship between a stable model $M \in SM(P)$ and a set of default literals can be understood as a form of *compatibility*.

Example. Consider the normal logic program P =

 $\{a \leftarrow \sim b. \ b \leftarrow \sim a. \ c \leftarrow \sim d. \ d \leftarrow \sim c. \ e \leftarrow \sim f. \ f \leftarrow \sim e. \}.$

Now, for instance, the set of default literals $L = \{a, \sim c\}$ is compatible with stable models $M_1 = \{a, d, e\}$ and $M_2 = \{a, d, f\}$ in SM(P).

Lower and Upper Bounds

- ➤ A lower bound $LB(P,L) \supseteq L$ is a set of literals which is compatible with any stable model $M \in SM(P)$ compatible with L.
- ➤ An upper bound $UB(P,L) \subseteq Hb(P)$ is a set of atoms that contains every $M \in SM(P)$ compatible with L.
- ➤ An approximation Expand(P,L) is the *least* set of literals L' which contains L and is *closed* in the following senses:
 - (i) If a default literal $l \in LB(P,L')$, then $l \in L'$.
 - (ii) If an atom $a \notin UB(P,L')$, then $\sim a \in L'$.
- ➤ The approximation Expand(P,L) can be obtained by computing lower and upper bounds iteratively and applying (i) and (ii).

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Implementation Techniques

12

4. IMPLEMENTING APPROXIMATIONS

- For the sake of efficiency, it is important that the bounds LB(P,L)and UB(P,L) can be computed in linear time.
- The resulting approximation at any point of the search space L should be at least as accurate as WFM(P), i.e., $WFM(P) \subseteq L$.
- > Assumptions embodied in L should be taken fully into account.

Definition. For a normal logic program P and a set of default literals L over Hb(P), the set of *active rules* of P given L is

 $\operatorname{ActR}(P,L) = \{a \leftarrow B, \sim C \in P \mid L \cap (\sim B \cup C) = \emptyset\}.$

Remark. The bodies of rules in ActR(P,L) are not falsified by L!

T-79.5102 / Autumn 2007 Implementation Techniques	13	T-79.5102 / Autumn 2007 Implementation Techniques
Lower Bound		Upper Bound
Definition. The lower bound $LB(P,L)$ is the least set of literals L' which contains L and is closed under the following principles:		Definition. The upper bound $UB(P,L) = LM(ActR(P,L)^{\emptyset})$ where the reduct $ActR(P,L)^{\emptyset}$ is $ActR(P,L)$ with all negative literals removed.
P1: If $a \leftarrow B$, $\sim C \in \operatorname{ActR}(P,L')$ and $B \cup \sim C \subseteq L'$, then $a \in L'$.		Example. Consider the following normal program P_2 :
P2: If $b \neq a$ for every rule $a \leftarrow B, \sim C$ in $\operatorname{ActR}(P,L')$, then $\sim b \in L'$.		$a \leftarrow \sim b. b \leftarrow \sim a. c \leftarrow \sim a. d \leftarrow \sim c. e \leftarrow \sim d.$
 P3: If a ∈ L' is the head of exactly one rule a ← B, ~C in ActR(P,L'), then the body B ∪ ~C ⊆ L'. P4: If ~a ∈ L', a rule a ← l₁,, l_n ∈ ActR(P,L'), and {l₁,, l_{i-i}, l_{i+1},, l_n} ⊆ L', then the complement l_i ∈ L'. P5: If for some atom a ∈ Hb(P) both a ∈ L' and ~a ∈ L', then all 		Verify the following upper bounds for P_2 : 1. UB $(P_2, \emptyset) = \{a, b, c, d, e\}$. \implies Expand $(P_2, \emptyset) = \emptyset$ because also LB $(P_2, \emptyset) = \emptyset$ holds. 2. UB $(P_2, \{a\}) =$ LM $(\{a \leftarrow \sim b. \ d \leftarrow \sim c. \ e \leftarrow \sim e. \}^{\emptyset}) = \{a, d, e\}$.
literals over $\operatorname{Hb}(P)$ belong to L' .		3. UB($P_2, \{\sim a\}$) = { a, b, c, d, e }.
© 2007 TKK / TCS		© 2007 ТКК / TCS
T-79.5102 / Autumn 2007 Implementation Techniques	14	T-79.5102 / Autumn 2007 Implementation Techniques
Example		Further Examples
Let us compute $L_1 = \operatorname{LB}(P_1, \{\sim b\})$ and $L_2 = \operatorname{LB}(P_1, \{b\})$ for P_1 :		Example Let us compute approximations $Expand(\mathbf{P}_{a} \mid a)$ and

 $\operatorname{ActR}(P_1, L_2)$

 r_2, r_3, r_4

 r_2, r_3

 r_2

Example. Let us compute approximations $Expand(P_2, \{a\})$ and Expand(P_2 , { $\sim a$ }) for the preceding program P_2 :

 $a \leftarrow \sim b$. $b \leftarrow \sim a$. $c \leftarrow \sim a$. $d \leftarrow \sim c$. $e \leftarrow \sim d$.

1. $LB(P_2, \{a\}) = \{a, \sim b, \sim c, d, \sim e\} = Expand(P_2, \{a\}).$

2. $LB(P_2, \{\sim a\}) = \{\sim a, b, c, \sim d, e\} = Expand(P_2, \{\sim a\}).$

Example. Let us then analyze a normal program P_3 having two rules:

 $a \leftarrow \sim b$. $b \leftarrow b$.

Now $LB(P_3, \emptyset) = \emptyset$ but $UB(P_3, \emptyset) = \{a\}$ so that $\sim b \in Expand(P_3, \emptyset)$. \implies Expand $(P_3, \emptyset) = \{a, \sim b\}$ because LB $(P_3, \{\sim b\}) = \{a, \sim b\}$.

 $r_1: a \leftarrow \sim b$. $r_2: c \leftarrow a$. $r_3: b \leftarrow a, \sim c, \sim d$. $r_4: d \leftarrow c, \sim e$.

 L_2

h

С

all

 $a, \sim c, \sim d$

Ρ3

Ρ1

Ρ5

 $\operatorname{ActR}(P_1, L_1)$

 r_1, r_2, r_3, r_4

 r_1, r_2, r_3, r_4

 r_1, r_2, r_4

 r_1, r_2, r_4

 r_1, r_2, r_4

 L_1

а

С

d

 $\sim e$

 $\sim b$

P1

Ρ1

Ρ2

Ρ1

16

Implementing Bounds	
 The lower and upper bounds can be implemented as linear time algorithms that resemble the Dowling-Gallier presented above. The accuracy of Expand is at least as good as that of the well-founded model. In fact, we have Expand(P,0) = WFM(P). However, assumptions about stable models to compute, a set of default literals L ⊈ WFM(P), make Expand(P,L) more accurate. Example. For the normal program P₄ consisting of a ← ~b. b ← ~a. a ← b. we obtain Expand(P₄,0) = 0 and Expand(P₄, {b}) = {a,b,~a,~b}. But the conflict is not detected for P₅ = P₄ ∪ {b.}: WFM(P) = {a,b}. 	function Smodels(var A: literal set; I: A := Expand(P,L) if Conflict(P,A) t if Covered(P,A) t l := Choose(P,A) if Smodels(P,A \cup return \top ; else return Smo Remarks. Recall th The sets of literals represented in space
© 2007 TKK / TCS	
T-79.5102 / Autumn 2007 Implementation Techniques 18	T-79.5102 / Autum
5. BRANCH&BOUND ALGORITHM	Exa

Implementation Techniques

- ➤ The purpose of the function Smodels(P,L) is to check whether P has a stable model M which is compatible with L.
- > The underlying algorithm is based on a number of primitives:

T-79 5102 / Autumn 2007

- 1. The function Expand(P,L) returns a tightened approximation of stable models that are compatible with L.
- 2. The function Conflict(P,L) checks whether the approximation L obtained so far is contradictory $(\{a, \sim a\} \subseteq L \text{ for some } a)$.
- 3. The function Covered(P,L) checks whether the approximation L obtained so far covers all atoms of NBA(P), i.e., for each $a \in NBA(P)$, either $a \in L$ or $\sim a \in L$.
- The function Choose(P,L) implements the search heuristics, i.e., it picks the next *literal* for branching.

Implementation Techniques

T-79 5102 / Autumn 2007

