T-79.5102 / Autumn 2007 Implementation Techniques

Lecture 8: Implementation Techniques'

Outline

1. Dowling-Gallier algorithm

2. Full sets

3. Search method for stable models
4. Implementing approximations

5. Branch&bound algorithm

4)

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Implementation Techniques

4 N

1. DOWLING-GALLIER ALGORITHMI

O W. Dowling and J. Gallier [1984] presented their method originally
for testing the satisfiability of sets of Horn clauses.

O Due to close interconnection of Horn clauses with rules and
constraints, we present the method for positive programs directly.

O The iteration sequence Tp 10, Tp 11, ... provides a basic method
for computing LM(P) = Ifp(Tp) for a positive program P.

0 The least fixpoint, for which Tp T n=Tp] n—1 holds, is reached
in at most n= |Hb(P)|+ 1 applications of Tp.

O The time complexity is of O(|Hb(P)| x ||P]|) as for any M C Hb(P),
the time required to compute Tp(M) depends linearly on ||P||.

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Implementation Techniques

-

Data structures I

0 The iteration sequence of the operator Tp can be implemented
more efficiently using certain precomputed data structures.
0 The following data structures are used for a positive program P:

1. An array occurs[a] of sets of rules indexed by atoms a € Hb(P)
and precomputed as {r |r =h«<— B &€ P and a€ B} for each a

2. An array count|r] of integers indexed by rules r € P. The initial
value for a rule r =h < B is the number |B| of body atoms.

3. A set of atoms M C Hb(P) initialized as Tp T 1= Tp(0).

O The execution of the function LeastModel(M) given on the next
slide will gradually extend M to LM(P).

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Implementation Techniques

p N
Algorithm for Computing LM (P)

function LeastModel(M : atom set): atom set;
var Q: atom set; a: atom; r: rule;
Q=M
while Q # 0 do
a = pick(Q);
Q:=Q\{a}
for r in occurs[a] do
count[r] := count[r] — L;
if count[r] =0 and Head(r) ¢ M then do
Q := QU{Head(r)}; M := MU {Head(r)};
done
done
done
LeastModel := M;

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Implementation Techniques

-

Example. Consider a positive program P having the following rules:
ro:c. ri:d. rp:e—c,d. rz:f«<c rg:9«gf. rs:h—d,f.

The algorithm computes LM(P) = {c,d, e, f,h} as follows:

1. M := {c,d} 11.a:=d 2l.r =14

2. Q:= {c,d} 12. Q:= {f} 22. count[rq] ;=1
3.a:=¢ 13.r :=r2 23.1r ;=15

4. Q:= {d} 14. count[r] := 0 24, count[rs] :=0
5.1:=1r2 15. Q := {f,e} 25.Q := {eh}

6. count[rp] ;=1 16. M := {c,d,e, f} 26. M := {c,d,e f ,h}
7.1 =13 17.r :=rg 27.a:=e

8. countrg] ;== 0 18. count[rs] := 1 28. Q := {h}
9.Q:={d,f} 19.a:=f 29.a:=h

10. M := {c,d, f} 20. Q:= {e} 30.Q:=0

~

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Implementation Techniques

-

Observations about the AIgorithmI

O The operation of the while-loop is governed by invariants

1. QCMCLM(P).

2. Vr=a«BeP: countr] =B\ (M\Q)|.

3. VaeHb(P): (aeM <= dr=a«< BeP: count[r] =0).
O The progress of the while-loop is witnessed by |[LM(P)\ M|+ |Q|.

O The cumulative work done by the for-loop is proportional to the
number of positive body literals in the rules of P.

O Assuming constant costs for set operations and arithmetics, the
algorithm runs in time linear with respect to ||P||.

O The implementation of Q determines the way how computation
proceeds: e.g., breadth-first (LIFO) or depth-first (FIFO).

T-79.5102 / Autumn 2007 Implementation Techniques

4)

2. FULL SETS I

O The set of atoms a € Hb(P) that appear in the negative body
literals of a normal program P is denoted by NBA(P).

0 The members of NBA(P) affect the reduct PV play a major role
when the stable models M of a normal program P are determined.

O The stable models M € SM(P) can be characterized in terms of
sets of negative default literals ~a based on atoms a € NBA(P).

O The least model associated with a normal logic program P and a
set of negative default literals F is LM (Pr) where
Pr={a—B|a—B,~CePand ~CCF}.

Definition. A set F of negative default literals is P-full if and only if
for all a€ NBA(P), the literal ~a€eF < a¢ LM(P:).

© 2007 TKK / TCS

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

4 N

Properties of Full Sets'

Theorem. Let P be a normal program and F a subset of ~NBA(P).

Implementation Techniques

1. If F is P-full, then M = LM(Px) € SM(P).

2. If M € SM(P), then F = {~a|ac NBA(P)\M} is P-full and
M = LM(Px).

Example. The set of atoms NBA(P) = {a,b,d} for a normal program
P={a<—c~b b—~a c—~d d—~a }.

1. The set of literals Fy = {~b,~d} is P-full, since P, ={a«c. c. }
and LM(Pr,) = {a,c}. Thus M = {a,c} is stable.

2. But e.g. F, = {~b} is not P-full because P, = {a—c. },
LM(Pg,) =0, and, for instance, ~a ¢ F».

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Implementation Techniques

4)

3. SEARCH METHOD FOR STABLE MODELSI

O The goal is to compute—as efficiently as possible—one or several

stable models for a normal program P given as input.

0 The characterization of stable models based on full sets suggests
that the search space essentially consists of subsets of NBA(P).

O Following the general branch&bound search strategy, we gradually
build a set L of default literals that constrains stable models being
computed and try to prune the search space.

1. Assumptions about models are made one by one.

2. At each point of the search space, stable models that satisfy all
the assumptions introduced so far (the set L) are approximated.

3. If a conflict is found, the search backtracks, and the search for

other models takes place similarly, if a model is found.

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Implementation Techniques

4 N

Approximation Criteria'

0 Stable models being computed for a normal program P are
specified in terms of a set of default literals L over Hb(P):

1. If a€e L, then a€ M for stable models M being computed.

2. If ~a€L, then a¢ M for stable models M being computed
(~a € F holds for the respective full sets F).

O Such a relationship between a stable model M € SM(P) and a set
of default literals can be understood as a form of compatibility.

Example. Consider the normal logic program P =
{a<~~b. b—~a. c—~d. d—~c. e—~f. f—r~e}

Now, for instance, the set of default literals L = {@,~C} is compatible
with stable models My = {a,d,e} and Mz = {a,d, f} in SM(P).

_

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Implementation Techniques

Lower and Upper Bounds'

O A lower bound LB(P,L) D L is a set of literals which is compatible
with any stable model M € SM(P) compatible with L.

O An upper bound UB(P,L) C Hb(P) is a set of atoms that contains
every M € SM(P) compatible with L.

O An approximation Expand(P,L) is the least set of literals L’ which
contains L and is closed in the following senses:
(i) If a default literal | € LB(P,L), then | € L.
(ii) If an atom a¢Z UB(PL'), then ~a€ L.

00 The approximation Expand(P,L) can be obtained by computing
lower and upper bounds iteratively and applying (i) and (ii).

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Implementation Techniques

4. IMPLEMENTING APPROXIMATIONS I

O For the sake of efficiency, it is important that the bounds LB(P,L)
and UB(P,L) can be computed in linear time.

O The resulting approximation at any point of the search space L
should be at least as accurate as WFM(P), i.e., WFM(P) C L.

O Assumptions embodied in L should be taken fully into account.

Definition. For a normal logic program P and a set of default literals
L over Hb(P), the set of active rules of P given L is

ACtR(P,L) = {a—B,~C e P|LN(~BUC) = 0}.

Remark. The bodies of rules in ActR(P,L) are not falsified by L!

4)

4 N

- J

© 2007 TKK / TCS

11

12

T-79.5102 / Autumn 2007 Implementation Techniques

-

Lower Bound I

Definition. The lower bound LB(P,L) is the least set of literals L’
which contains L and is closed under the following principles:

P1: If a«< B, ~C € ActR(P,L’) and BU~C C L/, then a€ L.
P2: If b+# a for every rule a< B, ~C in ActR(P,L’), then ~beL’.

then the body BU~C C L'.

P4: If ~ac L/, arulea«~Iy,..., I € ActR(P L), and
{l3,...,)izi,liz1,...,In} C L', then the complement I; € L.

P5: If for some atom a€ Hb(P) both a€ L’ and ~a€ L/, then all
literals over Hb(P) belong to L’.

P3: If a€ L’ is the head of exactly one rule a« B, ~C in ActR(P,L’),

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Implementation Techniques

/
Let us compute L1 = LB(Py,{~b}) and L, = LB(Py,{b}) for Py:

ri: a—~hb rp:c—a rz: b—an~c~d rs: d«c ~e

L1 ActR(Py, L) Lo ActR(Py,L>)
~b 1, Iy, 3, Iz b I, I3, I'g

a P1 | rq,rp 13 14 a,~C,~d | P3| rpr3

c Pl | rq, 1o 14 c PL|ro

~e | P2 | rq, 14 all P5

d P1 I, o, g

= The approximation Expand(Py,{~b}) ={~b,a,c,~e d}
determines a stable model M = {a,c,d}. The set Expand(Py,{b})
contains all literals. Thus there is no M € SM(P) such that be M.

© 2007 TKK / TCS

13

14

T-79.5102 / Autumn 2007 Implementation Techniques

-

Upper Bound I

Definition. The upper bound UB(P,L) = LM(ACtR(P,L)?) where the
reduct ActR(P, L)0 is ACtR(P,L) with all negative literals removed.

Example. Consider the following normal program P,:
a—~b be~a c—~a d«n~Cc e—~d.
Verify the following upper bounds for Pu:

1. UB(P,,0) ={a,b,c,d,e}.
= Expand(P2,0) = 0 because also LB(P,,0) = 0 holds.

2. UB(P,{a}) =LM({a«—~b. d—~c. e—~e }%) ={ad,e}.
3. UB(P,, {~a}) ={a,b,c,d,e}.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Implementation Techniques

-

Further Examples'

Example. Let us compute approximations Expand(P,,{a}) and
Expand (P, {~a}) for the preceding program Py:

a«~—~b b«~a c—~a d«~c e«—~d.
1. LB(P,,{a}) = {a,~h,~c,d,~e} = Expand(P,, {a}).
2. LB(Py,{~a}) = {~a,b,c,~d,e} = Expand(P,,{~a}).

Example. Let us then analyze a normal program P3 having two rules:
a—~b b<h

Now LB(Ps,0) = 0 but UB(P3,0) = {a} so that ~b € Expand(Ps,0).

—> Expand(P;,0) = {a,~b} because LB(Ps,{~b}) = {a,~b}.

_

J

© 2007 TKK / TCS

15

16

T-79.5102 / Autumn 2007 Implementation Techniques

-

Implementing Bounds'

O The lower and upper bounds can be implemented as linear time
algorithms that resemble the Dowling-Gallier presented above.

O The accuracy of Expand is at least as good as that of the
well-founded model. In fact, we have Expand(P,0) = WFM(P).

0 However, assumptions about stable models to compute, a set of
default literals L Z WFM(P), make Expand(P,L) more accurate.

Example. For the normal program P4 consisting of

a—n~b be~a a<b
we obtain Expand(P4,0) = 0 and Expand(Py, {b}) = {a,b,~a, ~b}.
But the conflict is not detected for Ps =P4U{b. }: WFM(P) = {a,b}.

_

J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Implementation Techniques

-

5. BRANCH&BOUND ALGORITHMI

O The purpose of the function Smodels(P,L) is to check whether P
has a stable model M which is compatible with L.

O The underlying algorithm is based on a number of primitives:

1. The function Expand(P L) returns a tightened approximation
of stable models that are compatible with L.

2. The function Conflict(P, L) checks whether the approximation
L obtained so far is contradictory ({a@,~a} C L for some a).

3. The function Covered(P,L) checks whether the approximation
L obtained so far covers all atoms of NBA(P), i.e., for each
ae NBA(P), eitherac L or ~acL.

4. The function Choose(P L) implements the search heuristics,
i.e., it picks the next literal for branching.

~

J

© 2007 TKK / TCS

17

18

T-79.5102 / Autumn 2007 Implementation Techniques

-

The snodel s AIgorithmI

function Smodels(P,L): boolean;
var A: literal set; |: literal;
A:= Expand(PL);
if Conflict(P,A) then return L;
if Covered(P, A) then return T;
| := Choose(P,A);
if Smodels(P AU{l}) then
return T;
else return Smodels(P, AU {I});

Remarks. Recall the complements a= ~a and ~a=a.

The sets of literals L and A (the new approximation) can be
represented in space linear with respect to |Hb(P)| < [|P|].

_

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Implementation Techniques

-

Example: Cautious Reasoning'

Let us show (P,e) € CAUTIOUS for the following normal program P:

a~—~b b«—~a c—a~b c—b~a d«~c e—~d

The non-existence of counter-examples is showed using L = {~e}:

mie
d
I
~C
/7 N\
i
~b b
Lol
X X

Remark. Only one choice was necessary although [NBA(P)| = 4.

_

J

© 2007 TKK / TCS

19

20

T-79.5102 / Autumn 2007 Implementation Techniques

Example: Search for Stable Models'

Let us search the stable models of the following normal program P:
a—c,~b b«—~a c—~d d<r~a

In the beginning, the set of assumptions L = 0 for this task:

N
a ~a

Co

= The sets F; = {~b,~d} and F, = {~a,~c} are P-full—giving
rise to stable models My = {a,c} and Mz = {b,d} in SM(P).

4)

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Implementation Techniques

4 N

Search Heuristics'

O In the look ahead search strategy, refined approximations
L1 = Expand(P,LU{a}) and L, = Expand(P,LU{~a})
are computed for each a € NBA(P) not covered by L.

O These can be used to recursively refine the approximation L.:
1. If Ly contains ~a (a conflict), then ~a is added to L.
2. If Ly contains a (a conflict), then ais added to L.
The search at L can be stopped if both a and ~a are added.

O If both L1 and Ly are consistent, they provide an estimate of the
size of the remaining search space.

O The search heuristics of the smodel s solver selects for branching a
literal expected to create the smallest search space.

- J

© 2007 TKK / TCS

21

22

T-79.5102 / Autumn 2007 Implementation Techniques

-

OBJECTIVES I

O You understand the operation of the Dowling-Gallier-algorithm
and are able to simulate it for a given normal program.

O You are familiar with the branch&bound algorithm that underlies
the snodel s system.

O Given a smallish normal program, you are able to determine its
stable models and to reason about them (e.g., cautiously).

O You know at least some approximation principles and how to
exploit them efficiently in the computation of stable models.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Implementation Techniques

-

TIME TO PONDERI

Recall the technique for removing a choice rule

{a1,...,an} < b1, ...,bn, ~C1, ..., ~Cn

by translating it into 2h+ 1 rules

a; < b,~ag. an < b, ~ap.
ap < ~an.

b<_ bl,...7bn, NCl,...7NCm.

aj «— ~aj.

Given this interconnection, consider the applicability of the principles
P1-P4 involved in the lower bound LB(P,L) to choice rules.

_

© 2007 TKK / TCS

23

24

