2

Lecture 7: Complexity and Approximation

Outline

- 1. Complexity concepts in brief
- 2. Complexity results for ASP
- 3. Ordinals and transfinite induction
- 4. Well-founded semantics

Additional references:

- C. Papadimitriou: "Computational Complexity", 1994.
- T. Jech: "Set Theory", 1978.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Complexity and Approximation

1. COMPLEXITY CONCEPTS IN BRIEF

- ➤ We shall use *Turing machines* (TM) as models of computation.
- ► A deterministic Turing machine (DTM) M is a quadruple $\langle K, \Sigma, \delta, s \rangle$ where
 - 1. K is a set of states that includes the initial state $s \in K$,
 - 2. Σ is the finite *alphabet* of *M* which always contains \sqcup and \triangleright , the blank and first symbol, respectively, and
 - 3. δ is a transition function

 $\delta: K \times \Sigma \rightarrow (K \cup \{\text{halt}, \text{yes}, \text{no}\}) \times \Sigma \times \{\rightarrow, \leftarrow, \downarrow\}$ where halt, yes, and no are halting, accepting, and rejecting states, respectively, and \rightarrow , \leftarrow , and \downarrow express cursor moves.

> In a *nondeterministic* Turing machine (NTM) M, δ is replaced by a *transition relation* for the domain and range in question.

Deterministic Computation Consider a deterministic Turing machine $M = \langle K, \Sigma, \delta, s \rangle$. > States of computation are described in terms of *configurations* $\langle q, w, u \rangle$ where $q \in K$ is a state and $w, u \in \Sigma^*$ are strings. \blacktriangleright The *initial configuration* of *M* is $\langle s, \triangleright, x \rangle$ where the string $x \in (\Sigma - \{\sqcup\})^*$ or $x = \sqcup$ is the *input* of M. \blacktriangleright The computation of M on input x is a sequence of configurations $\langle q_0, w_0, u_0 \rangle \xrightarrow{M} \dots \xrightarrow{M} \langle q_k, w_k, u_k \rangle$ where $q_0 = s$, $w_0 = \triangleright$, $u_0 = x$, k > 0, and $q_k \in \{\text{halt, yes, no}\}$. \blacktriangleright The reflexive transitive closure of $\stackrel{M}{\rightarrow}$ is denoted by $\stackrel{M^*}{\rightarrow}$. > The machine *M* accepts / rejects its input x iff $q_k = \text{yes} / q_k = \text{no}$. © 2007 TKK / TCS T-79.5102 / Autumn 2007 Complexity and Approximation **Deciding Language Membership** \blacktriangleright Given an input x, an NTM M may exhibit different computations that can be organized as a *computation tree*: $\langle s, \triangleright, 0000 \rangle$ $M^* \swarrow \dots \searrow M^*$ $\langle no, \triangleright 1, 000 \rangle$ $\langle ves, \triangleright 0000, \sqcup \rangle$ > An NTM $M = \langle K, \Sigma, \delta, s \rangle$ decides a *language*, i.e., a set of strings $L \subseteq (\Sigma \setminus \{\sqcup\})^*$, if and only if for all strings $x \in (\Sigma \setminus \{\sqcup\})^*$,

 $x \in L \iff \langle s, \triangleright, x \rangle \stackrel{M^*}{\to} \langle \operatorname{yes}, w, u \rangle$ for some w and u.

➤ This definition covers DTMs as special cases of NTMs.

Example. The input 0000 is accepted by the rightmost computation.

6

Decision Problems

- ➤ A decision problem is a problem whose instances have a simple solution: either an answer "yes" or "no".
- ► Consider an instance of PRIMES: Is 561 a prime?
- ► A decision problem is solved using a DTM or an NTM
 - 1. by encoding problem instances as strings, and
 - 2. by constructing a machine M which decides the language L corresponding to the "yes"-instances of the problem.

Example. The famous *satisfiability problem* of propositional logic is about deciding whether the given sentence ϕ is satisfiable or not.

 \implies The problem can be identified with the language of satisfiable sentences—denoted by SAT.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Complexity and Approximation

Fundamental Complexity Classes

- The computational complexity of decision problems can be analyzed by setting resource bounds on TMs that solve them.
- A TM M halts in polynomial time if and only if there is a polynomial p so that for any input x ∈ (Σ − {⊔})*, any computation of M on x comprises at most p(|x|) configurations.
- ► The two fundamental time complexity classes are
 - 1. P: languages decidable in polynomial time using a DTM, and
 - $2. \ NP: \ \text{languages decidable in polynomial time using an NTM}.$
- \blacktriangleright The class P is a subclass of NP—and likely to be a proper one.

Theorem. PRIMES and SAT belong to P and NP, respectively.

Reductions

Definition. Let L_1 and L_2 be two languages.

The language L_1 is reducible to L_2 iff there is function *R*—computable by a DTM *M* in polynomial time—such that for all inputs *x*,

$$x \in L_1 \iff R(x) \in L_2$$

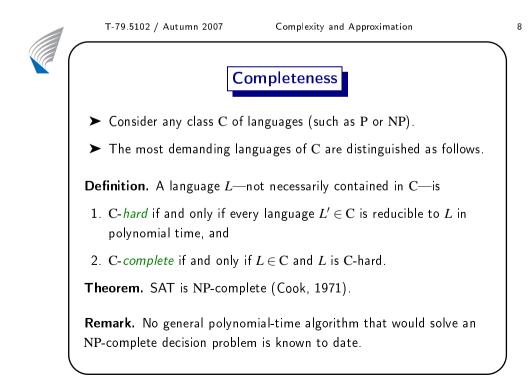
Example. Consider a graph $G = \langle N, E \rangle$ where N and $E \subseteq N \times N$ specify its nodes and edges, respectively.

The question whether G is 3-colorable (language 3COL) can be reduced to propositional satisfiability using $R(G) = R(\langle N, E \rangle) =$

 $\{r_n \vee g_n \vee b_n \mid n \in N\} \cup \{\neg r_n \vee \neg r_m, \ \neg g_n \vee \neg g_m, \ \neg b_n \vee \neg b_m \mid \langle n, m \rangle \in E\}.$

Proposition. For any finite G, $G \in 3COL$ if and only if $R(G) \in SAT$.

© 2007 TKK / TCS



2. COMPLEXITY RESULTS FOR ASP

A number of decision problems are of interest:

1 *Existence* of a stable model:

Given a normal logic program P, does P have a stable model?

- 2. Brave reasoning with respect to stable models: Given a normal logic program P and an atom $a \in Hb(P)$: Is there a stable model $M \in SM(P)$ such that a is true in M?
- 3. *Cautious reasoning* with respect to stable models: Given a normal logic program P and an atom $a \in Hb(P)$: Is a true in every stable model $M \in SM(P)$?

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Complexity and Approximation

Existence of Stable Models

Definition. The language STABLE is the set of finite normal programs *P*—represented as strings—such that $SM(P) \neq \emptyset$. Proposition. STABLE is in NP and NP-hard/complete. **Proof.** 1. It is possible to construct an NTM M which (i) chooses a model candidate $M \subseteq Hb(P)$ for the input P, (ii) computes $LM(P^M)$ in time polynomial with respect to ||P||, and (iii) accepts P if $M = LM(P^M)$ and rejects it otherwise. 2. For a set S of clauses, let $R(S) = \{f \leftarrow \sim A, \sim \overline{B}, \sim f. \mid A \lor \neg B \in S\}$ $\cup \{a \leftarrow \overline{a}. \ \overline{a} \leftarrow a. \ | \ a \in \operatorname{Hb}(S)\}$ where shorthands $A = \{a_1, \dots, a_n\}$, $B = \{b_1, \ldots, b_m\}$, and $\overline{B} = \{\overline{b} \mid b \in B\}$ are used. For a finite set S of clauses, $S \in SAT \iff R(S) \in STABLE$.

Sketch for a Direct Completeness Proof

- > Due to NP-completeness, any nondeterministic polynomial time computation can be reduced to computation of stable models.
- \blacktriangleright More specifically, one may construct for any NTM M, any string x, and any polynomial p, a normal program P(M, x, p) such that

M accepts x in at most p(|x|) steps

 \iff the program P(M, x, p) has a stable model.

- > Such a *polynomial time* reduction P(M, x, p) describes the effects of n = p(|x|) computation steps in terms of
 - 1. the state of the tape (n cells) in the beginning,
 - 2. the possible state transitions of M, and
 - 3. the final condition for an accepting computation.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Complexity and Approximation

12

Complexity of Brave Reasoning

Definition. The language BRAVE consists of pairs $\langle P, a \rangle$ such that P is a finite normal program, $a \in \operatorname{Hb}(P)$, and $a \in M$ for some $M \in \operatorname{SM}(P)$. **Proposition.** BRAVE is in NP and NP-hard/complete. **Proof.** 1. For a normal program P and an atom $a \in Hb(P)$, $\langle P, a \rangle \in \mathsf{BRAVE} \iff R_1(P, a) = P \cup \{f \leftarrow \neg a, \neg f.\} \in \mathsf{STABLE}$ where $f \notin \operatorname{Hb}(P)$ is new so that $\operatorname{Hb}(R_1(P,a)) = \operatorname{Hb}(P) \cup \{f\}$. 2. For a normal program P_{i}

 $P \in \mathsf{STABLE} \iff R_2(P) = \langle P \cup \{f, \}, f \rangle \in \mathsf{BRAVE}$

where $f \notin Hb(P)$ is new so that $Hb(P \cup \{f, \}) = Hb(P) \cup \{f\}$.

Complexity of Cautious Reasoning

Definition. CAUTIOUS is the language of pairs $\langle P, a \rangle$ such that P is a finite normal program, $a \in Hb(P)$, and $a \in M$ for every $M \in SM(P)$.

Proposition. The complement of CAUTIOUS is in NP and and NP-hard/complete which means that CAUTIOUS is coNP-complete.

Proof. 1. For a finite normal program P and an atom $a \in Hb(P)$,

$$\langle P, a \rangle \notin \mathsf{CAUTIOUS} \iff R_1(P, a) = P \cup \{f \leftarrow a, \sim f.\} \in \mathsf{STABLE}$$

where $f \notin \operatorname{Hb}(P)$ is new so that $\operatorname{Hb}(R_1(P,a)) = \operatorname{Hb}(P) \cup \{f\}$.

2. For a finite normal program P,

 $P \in \mathsf{STABLE} \iff R_2(P) = \langle P \cup \{f \leftarrow f. \}, f \rangle \notin \mathsf{CAUTIOUS}$

where
$$f \notin \operatorname{Hb}(P)$$
 is new so that $\operatorname{Hb}(P \cup \{f \leftarrow f. \}) = \operatorname{Hb}(P) \cup \{f\}$. \Box

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

 $Complexity \ {\tt and} \ {\tt Approximation}$

Complexity of smodels Programs

- ➤ The input language of the smodels solver is of interest.
- Analogous hardness results follow immediately from the fact that normal rules form a part of the input language.
- The translations presented so far do not provide a polynomial time reduction from smodels programs to normal programs.
- ➤ However, the membership of STABLE in NP can be proved as in the case of normal programs using a similar NTM.
- For BRAVE and the complement of CAUTIOUS, the reductions $R_1(P,a)$ presented for normal programs apply as such.
- ➤ The language of lparse is of much higher time complexity.

3. ORDINALS AND TRANSFINITE INDUCTION

The definition of *ordinal numbers*, or *ordinals* for short, will be based on two properties of sets defined as follows:

Definition. A set S is *transitive* if and only if for every $e \in S$, $e \subseteq S$.

Example. For instance, the set $S = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$ is transitive because it holds that $\emptyset \subseteq S$, $\{\emptyset\} \subseteq S$, and $\{\emptyset, \{\emptyset\}\} \subseteq S$.

Definition. A binary relation $\leq \subseteq S \times S$ is a *linear order* < on S if and only if < is irreflexive, transitive, and connected, i.e., for every $e_1, e_2 \in S, e_1 < e_2, e_1 = e_2$, or $e_2 > e_1$.

Definition. A set S is *well-ordered* by a linear order < if and only if for every $\emptyset \subset X \subseteq S$, there is the *least element* $x \in X$ with respect to <, i.e., for every $e \in X$, $x \le e$.

T-79.5102 / Autumn 2007 Complexity and Approximation	16
Ordinal Numbers	
\blacktriangleright An <i>ordinal number S</i> is a transitive set well-ordered by \in .	
➤ Each well-ordered set is isomorphic to some ordinal (or <i>order type</i>).	
► The class of all ordinals is well-ordered: $\alpha < \beta \iff \alpha \in \beta$.	
▶ If α and β are ordinals, then either $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$.	
 The sum α+β of two ordinals α and β denotes the concatenation of the respective well-orders. 	
Example. Natural numbers correspond to <i>finite</i> ordinals:	
$0\mapsto \emptyset,\; 1=0+1\mapsto \{\emptyset\},\; 2=1+1\mapsto \{\emptyset,\{\emptyset\}\},\; \ldots$	
The set of all natural numbers corresponds to the least infinite ordinal $\omega = \{0, \{0\}, \{0, \{0\}\}, \{0, \{0\}, \{0, \{0\}\}\}, \ldots\}.$	

Ordinals and Cardinals

Definition.

- 1. The successor $\alpha + 1$ of an ordinal α is the ordinal $\alpha \cup \{\alpha\}$.
- 2. If $\alpha = \beta + 1$ for some ordinal β , then α is a successor ordinal.
- 3. An ordinal α which is not a successor ordinal is a limit ordinal.
- 4. If $|\alpha| \neq |\beta|$ for every ordinal $\beta < \alpha$, then α is a *cardinal* number.

Examples.

- 1. The first two limit ordinals are 0 and ω .
- 2. $2 + \omega = \omega$ are $\omega + 2$ are not isomorphic as well-ordered sets.
- 3. The ordinals $2 = \{0, \{0\}\}$ and ω are cardinals but $\omega + 2$ is not $(|\omega| = |\omega + 2|)$.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Complexity and Approximation

The Principle of Transfinite Induction

- \blacktriangleright Let $P(\alpha)$ be some property defined for an ordinal α .
- Proving the property P(α) for all ordinals α using transfinite induction consists of the following tree steps:
 - 1. In the base case $\alpha = 0$, it is proved that P(0).
 - 2. Then $P(\alpha+1)$ is proved for all successor ordinals $\alpha+1$ assuming that $P(\alpha)$ holds by the inductive hypothesis.
 - 3. Finally, $P(\beta)$ is proved for all limit ordinals β using the inductive hypothesis that $P(\alpha)$ holds for all ordinals $\alpha < \beta$.

Remark. Transfinite induction is the basic method for proving properties of ordinals, or other objects indexed by ordinals.

4. WELL-FOUNDED SEMANTICS

- Since reasoning with stable models is intractable in general, finding techniques that approximate such reasoning tasks is of interest.
- The well-founded semantics [Van Gelder et al., 1988] provides a sound approximation of stable models.
- Each normal program P is assigned a unique three-valued model that can be characterized in terms of the operator Γ_P .

Example. Suppose $M \subseteq Hb(P)$ is a set of atoms which are known to be true for sure (initially this set could be \emptyset). Then

- 1. $\Gamma_P(M) = \operatorname{LM}(P^M)$ gives atoms that are *potentially true*, and
- 2. $\Gamma_P^2(M) = \Gamma_P(\Gamma_P(M))$ gives atoms that are true for sure, again.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Complexity and Approximation

20

19

Properties of the Approximation Operator Γ_P^2

The following results are formulated for normal programs P.

Proposition. The operator Γ_P^2 is monotonic.

Proof. Consider any interpretations $M_1 \subseteq M_2 \subseteq \text{Hb}(P)$. Since Γ_P is antimonotonic, we obtain $\Gamma_P(M_2) \subseteq \Gamma_P(M_1)$ and $\Gamma_P^2(M_1) \subseteq \Gamma_P^2(M_2)$.

Corollary. The operator Γ_P^2 has the least fixpoint $lfp(\Gamma_P^2)$.

Proposition. For all $M \in SM(P)$, $lfp(\Gamma_P^2) \subseteq M \subseteq \Gamma_P(lfp(\Gamma_P^2))$.

Proof. Consider any $M \in SM(P)$. Let $M_0 = \emptyset$, $M_{\alpha+1} = \Gamma_P^2(M_\alpha)$ for all successor ordinals $\alpha + 1$ and $M_\beta = \bigcup_{\alpha < \beta} M_\alpha$ for all limit ordinals β . Then $M_\alpha \subseteq M \subseteq \Gamma_P(M_\alpha)$ follows by transfinite induction for any α . \Box

The Well-Founded Model

- The operator Γ_P yields a lower and an upper bound for SM(P).
- The fixpoint lfp(Γ_P²) gives rise to a *partial* (three-valued) model, the *well-founded model* of P. Stable models are *total* (two-valued).
- ► In contrast with $lfp(T_P)$, the fixpoint $lfp(\Gamma_P^2)$ might not be reached with ω applications of Γ_P^2 .

Definition. The well-founded model of a normal program P is characterized by $WFM(P) = lfp(\Gamma_P^2) \cup \{\sim a \mid a \in Hb(P) \setminus \Gamma_P(lfp(\Gamma_P^2))\}.$

Proposition. If WFM(P) is total, i.e., $\Gamma_P(\text{lfp}(\Gamma_P^2)) \setminus \text{lfp}(\Gamma_P^2) = \emptyset$, it holds that $\text{SM}(P) = \{\text{lfp}(\Gamma_P^2)\}.$

Example. For the normal program $P = \{a \leftarrow \sim a, \sim b.\}$, we have $\Gamma_P(\emptyset) = \{a\}$ and $\Gamma_P^2(\emptyset) = \emptyset$. Thus WFM $(P) = \{\sim b\}$.

T-79.5102 / Autumn 2007 Complexity and Approximation
Example
Consider the normal program $\mathit{Q}=$
$\{a_1 \leftarrow \sim a_0. \qquad a_2 \leftarrow \sim a_1. \qquad a_3 \leftarrow \sim a_2.$
$b_1 \leftarrow a_3, \sim b_2. b_2 \leftarrow a_3, \sim b_1. \}.$
The construction of $\mathrm{lfp}(\Gamma^2_Q)$ proceeds as follows:
1. $\Gamma_Q(\emptyset) = \{a_1, a_2, a_3, b_1, b_2\}$ and $\Gamma_Q^2(\emptyset) = \{a_1\}$.
2. $\Gamma_Q(\{a_1\}) = \{a_1, a_3, b_1, b_2\}$ and $\Gamma_Q^2(\{a_1\}) = \{a_1, a_3\}.$
3. $\Gamma_Q(\{a_1,a_3\}) = \{a_1,a_3,b_1,b_2\}$ and $\Gamma_Q^2(\{a_1,a_3\}) = \{a_1,a_3\}.$
Thus $lfp(\Gamma_Q^2) = \{a_1, a_3\}$ and $WFM(Q) = \{a_1, a_3, \sim a_0, \sim a_2\}$ which approximates the two stable models in $SM(Q) = \{\{a_1, a_3, b_1\}, \{a_1, a_3, b_2\}\}.$

Example. Consider the infinite normal program R = Gnd(P) for a normal program P involving variables and function symbols:

$$R = \{a_{i+1} \leftarrow \sim b_i. \ b_i \leftarrow \sim a_i. \ | i \ge 0\} \cup \{c \leftarrow a_i. \ | i \ge 0\} \cup \{e_{i+1} \leftarrow \sim c, \sim d_i. \ d_i \leftarrow \sim c, \sim e_i | i \ge 0\}.$$

1.
$$\Gamma_R^2 \uparrow 0 = \emptyset$$
.
2. $\Gamma_R^2 \uparrow i = \{b_j \mid 0 \le j < i\}$.
3. $\Gamma_R^2 \uparrow \omega = \{b_j \mid j \ge 0\}$.
4. $\Gamma_R^2 \uparrow \omega + i = \{b_j \mid j \ge 0\} \cup \{d_j \mid 0 \le j < i\}$.
5. $\Gamma_R^2 \uparrow \omega + \omega = \{b_j \mid j \ge 0\} \cup \{d_j \mid j \ge 0\} = \mathrm{lfp}(\Gamma_R^2)$.
Thus WFM(R) = $\{\sim a_j \mid j \ge 0\} \cup \{b_j \mid j \ge 0\} \cup \{\sim c\}$
 $\cup \{d \mid j \ge 0\} \cup \{\sim e_j \mid j \ge 0\}$.

T-79.5102 / Autumn 2007

Complexity and Approximation

Complexity of Well-Founded Reasoning

The effects of approximation become also apparent in the computational complexities associated with the main reasoning tasks.

- ➤ Since the existence of the well-founded model is guaranteed the respective decision problem can be answered "yes" constantly.
- Moreover, there is no distinction between brave and cautious reasoning because the well-founded model is also unique.

Proposition. BRAVE = CAUTIOUS is in P and P-hard/complete.

Proof. 1. It is possible to construct a DTM M which (i) computes $M = lfp(\Gamma_P^2)$ for P and (ii) accepts the input $\langle P, a \rangle$ if and only if $a \in M$.

2. For a set of *Horn clauses S*, $S \in SAT \iff R(S) = \langle \{a \leftarrow B, | a \lor \neg B \in S\} \cup \{f \leftarrow B, | \neg B \in C\}, f \rangle \in CAUTIOUS.$

© 2007 TKK / TCS

OBJECTIVES

- You are familiar with the basic concepts of computational complexity theory (classes P and NP, reductions, and completeness).
- ➤ You know the computational complexity results associated with the main reasoning tasks of ASP.
- ➤ You know the basics of ordinals and the difference of (ordinary) finite induction and transfinite induction.
- ➤ You are able to define well-founded models for normal program and prove simple properties about them.
- > You can calculate the well-founded model for simple normal logic programs (by applying Γ_P^2 iteratively).

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Complexity and Approximation

TIME TO PONDER

Reconsider the technique of encoding AI planning problems and how the accepting computations of an NTM M, time-wise bounded by a polynomial p, could be described in terms of normal rules.

- What is the notion of a situation in the context of NTMs?
- Design a set of relation symbols for the description of situations.
- What kind of operators can be identified?
- How the length of a plan is determined?

© 2007 TKK / TCS