Lecture 7: Complexity and Approximation

Outline

1. Complexity concepts in brief
2. Complexity results for ASP
3. Ordinals and transfinite induction
4. Well-founded semantics

Additional references:
C. Papadimitriou: "Computational Complexity", 1994.
T. Jech: "Set Theory", 1978.

1. COMPLEXITY CONCEPTS IN BRIEF

- We shall use Turing machines (TM) as models of computation.
- A deterministic Turing machine (DTM) M is a quadruple
$\langle K, \Sigma, \delta, s\rangle$ where

1. K is a set of states that includes the initial state $s \in K$,
2. Σ is the finite alphabet of M which always contains \sqcup and \triangleright, the blank and first symbol, respectively, and
3. δ is a transition function

$$
\delta: K \times \Sigma \rightarrow(K \cup\{\text { halt, yes, no }\}) \times \Sigma \times\{\rightarrow, \leftarrow, \downarrow\}
$$ where halt, yes, and no are halting, accepting, and rejecting states, respectively, and \rightarrow, \leftarrow, and \downarrow express cursor moves.

- In a nondeterministic Turing machine (NTM) M, δ is replaced by a transition relation for the domain and range in question.

Deterministic Computation

Consider a deterministic Turing machine $M=\langle K, \Sigma, \delta, s\rangle$.

- States of computation are described in terms of configurations $\langle q, w, u\rangle$ where $q \in K$ is a state and $w, u \in \Sigma^{*}$ are strings.
- The initial configuration of M is $\langle s, \triangleright, x\rangle$ where the string $x \in(\Sigma-\{\sqcup\})^{*}$ or $x=\sqcup$ is the input of M.
- The computation of M on input x is a sequence of configurations

$$
\left\langle q_{0}, w_{0}, u_{0}\right\rangle \xrightarrow{M} \ldots \xrightarrow{M}\left\langle q_{k}, w_{k}, u_{k}\right\rangle
$$

where $q_{0}=s, w_{0}=\triangleright, u_{0}=x, k>0$, and $q_{k} \in\{$ halt, yes, no $\}$.
> The reflexive transitive closure of \xrightarrow{M} is denoted by $\xrightarrow{M^{*}}$.
> The machine M accepts $/$ rejects its input x iff $q_{k}=$ yes $/ q_{k}=$ no.
c 2007 TKK / TCS

An NTM $M=\langle K, \Sigma, \delta, s\rangle$ decides a language, i.e., a set of strings $L \subseteq(\Sigma \backslash\{\sqcup\})^{*}$, if and only if for all strings $x \in(\Sigma \backslash\{\sqcup\})^{*}$,

$$
x \in L \Longleftrightarrow\langle s, \triangleright, x\rangle \xrightarrow{M^{*}}\langle\text { yes }, w, u\rangle \text { for some } w \text { and } u .
$$

This definition covers DTMs as special cases of NTMs.
Example. The input 0000 is accepted by the rightmost computation.

Decision Problems

A decision problem is a problem whose instances have a simple solution: either an answer "yes" or "no".

- Consider an instance of PRIMES: Is 561 a prime?
- A decision problem is solved using a DTM or an NTM

1. by encoding problem instances as strings, and
2. by constructing a machine M which decides the language L corresponding to the "yes"-instances of the problem.
Example. The famous satisfiability problem of propositional logic is about deciding whether the given sentence ϕ is satisfiable or not.
\Longrightarrow The problem can be identified with the language of satisfiable sentences-denoted by SAT.
© 2007 TKK / TCS

T-79.5102 / Autumn 2007
Complexity and Approximation

Fundamental Complexity Classes

> The computational complexity of decision problems can be analyzed by setting resource bounds on TMs that solve them.

- A TM M halts in polynomial time if and only if there is a polynomial p so that for any input $x \in(\Sigma-\{\sqcup\})^{*}$, any computation of M on x comprises at most $p(|x|)$ configurations.
- The two fundamental time complexity classes are

1. P: languages decidable in polynomial time using a DTM, and
2. NP: languages decidable in polynomial time using an NTM.

The class P is a subclass of NP—and likely to be a proper one.
Theorem. PRIMES and SAT belong to P and NP, respectively.

Reductions

Definition. Let L_{1} and L_{2} be two languages.
The language L_{1} is reducible to L_{2} iff there is function R-computable by a DTM M in polynomial time-such that for all inputs x,

$$
x \in L_{1} \Longleftrightarrow R(x) \in L_{2} .
$$

Example. Consider a graph $G=\langle N, E\rangle$ where N and $E \subseteq N \times N$ specify its nodes and edges, respectively.
The question whether G is 3-colorable (language 3COL) can be reduced to propositional satisfiability using $R(G)=R(\langle N, E\rangle)=$

$$
\left\{r_{n} \vee g_{n} \vee b_{n} \mid n \in N\right\} \cup\left\{\neg r_{n} \vee \neg r_{m}, \neg g_{n} \vee \neg g_{m}, \neg b_{n} \vee \neg b_{m} \mid\langle n, m\rangle \in E\right\} .
$$

Proposition. For any finite $G, G \in 3 \mathrm{COL}$ if and only if $R(G) \in$ SAT.
(c) 2007 TKK / TCS

T-79.5102 / Autumn 2007 Complexity and Approximation

Completeness

> Consider any class C of languages (such as P or NP).

- The most demanding languages of C are distinguished as follows.

Definition. A language L-not necessarily contained in C -is

1. C-hard if and only if every language $L^{\prime} \in \mathrm{C}$ is reducible to L in polynomial time, and
2. C-complete if and only if $L \in \mathrm{C}$ and L is C -hard.

Theorem. SAT is NP-complete (Cook, 1971).
Remark. No general polynomial-time algorithm that would solve an NP-complete decision problem is known to date.

2. COMPLEXITY RESULTS FOR ASP

A number of decision problems are of interest:

1. Existence of a stable model:

Given a normal logic program P, does P have a stable model?
2. Brave reasoning with respect to stable models:

Given a normal logic program P and an atom $a \in \operatorname{Hb}(P)$:
Is there a stable model $M \in \operatorname{SM}(P)$ such that a is true in M ?
3. Cautious reasoning with respect to stable models:

Given a normal logic program P and an atom $a \in \operatorname{Hb}(P)$:
Is a true in every stable model $M \in \operatorname{SM}(P)$?
© 2007 TKK / TCS

T-79.5102 / Autumn 2007
Complexity and Approximation

Existence of Stable Models

Definition. The language STABLE is the set of finite normal programs P-represented as strings-such that $\operatorname{SM}(P) \neq \emptyset$.
Proposition. STABLE is in NP and NP-hard/complete.
Proof. 1. It is possible to construct an NTM M which
(i) chooses a model candidate $M \subseteq \mathrm{Hb}(P)$ for the input P,
(ii) computes $\operatorname{LM}\left(P^{M}\right)$ in time polynomial with respect to $\|P\|$, and
(iii) accepts P if $M=\operatorname{LM}\left(P^{M}\right)$ and rejects it otherwise.
2. For a set S of clauses, let $R(S)=\{f \leftarrow \sim A, \sim \bar{B}, \sim f . \mid A \vee \neg B \in S\}$ $\cup\{a \leftarrow \sim \bar{a} . \quad \bar{a} \leftarrow \sim a . \mid a \in \operatorname{Hb}(S)\}$ where shorthands $A=\left\{a_{1}, \ldots, a_{n}\right\}$, $B=\left\{b_{1}, \ldots, b_{m}\right\}$, and $\bar{B}=\{\bar{b} \mid b \in B\}$ are used.
For a finite set S of clauses, $S \in$ SAT $\Longleftrightarrow R(S) \in$ STABLE. $\quad \square$

Sketch for a Direct Completeness Proof

- Due to NP-completeness, any nondeterministic polynomial time computation can be reduced to computation of stable models.
> More specifically, one may construct for any NTM M, any string x, and any polynomial p, a normal program $P(M, x, p)$ such that

$$
\begin{aligned}
& M \text { accepts } x \text { in at most } p(|x|) \text { steps } \\
& \Longleftrightarrow \text { the program } P(M, x, p) \text { has a stable model. }
\end{aligned}
$$

- Such a polynomial time reduction $P(M, x, p)$ describes the effects of $n=p(|x|)$ computation steps in terms of

1. the state of the tape (n cells) in the beginning,
2. the possible state transitions of M, and
3. the final condition for an accepting computation.
(c) 2007 TKK / TCS

T-79.5102 / Autumn 2007
Complexity and Approximation

Complexity of Brave Reasoning

Definition. The language BRAVE consists of pairs $\langle P, a\rangle$ such that P is a finite normal program, $a \in \mathrm{Hb}(P)$, and $a \in M$ for some $M \in \operatorname{SM}(P)$.
Proposition. BRAVE is in NP and NP-hard/complete.
Proof. 1. For a normal program P and an atom $a \in \operatorname{Hb}(P)$,

$$
\langle P, a\rangle \in \mathrm{BRAVE} \Longleftrightarrow R_{1}(P, a)=P \cup\{f \leftarrow \sim a, \sim f .\} \in \mathrm{STABLE}
$$

where $f \notin \mathrm{Hb}(P)$ is new so that $\mathrm{Hb}\left(R_{1}(P, a)\right)=\mathrm{Hb}(P) \cup\{f\}$.
2. For a normal program P,

$$
P \in \mathrm{STABLE} \Longleftrightarrow R_{2}(P)=\langle P \cup\{f .\}, f\rangle \in \mathrm{BRAVE}
$$

where $f \notin \mathrm{Hb}(P)$ is new so that $\mathrm{Hb}(P \cup\{f\})=.\mathrm{Hb}(P) \cup\{f\}$.

Complexity of Cautious Reasoning

Definition. CAUTIOUS is the language of pairs $\langle P, a\rangle$ such that P is a finite normal program, $a \in \operatorname{Hb}(P)$, and $a \in M$ for every $M \in \operatorname{SM}(P)$.
Proposition. The complement of CAUTIOUS is in NP and and NP-hard/complete which means that CAUTIOUS is coNP-complete.

Proof. 1. For a finite normal program P and an atom $a \in \operatorname{Hb}(P)$,

$$
\langle P, a\rangle \notin \mathrm{CAUTIOUS} \Longleftrightarrow R_{1}(P, a)=P \cup\{f \leftarrow a, \sim f .\} \in \mathrm{STABLE}
$$

where $f \notin \mathrm{Hb}(P)$ is new so that $\mathrm{Hb}\left(R_{1}(P, a)\right)=\mathrm{Hb}(P) \cup\{f\}$.
2. For a finite normal program P,

$$
P \in \mathrm{STABLE} \Longleftrightarrow R_{2}(P)=\langle P \cup\{f \leftarrow f .\}, f\rangle \notin \text { CAUTIOUS }
$$

where $f \notin \mathrm{Hb}(P)$ is new so that $\operatorname{Hb}(P \cup\{f \leftarrow f\})=.\mathrm{Hb}(P) \cup\{f\}$. \square

T-79.5102 / Autumn 2007
Complexity and Approximation

Complexity of smodels Programs

The input language of the smodels solver is of interest.Analogous hardness results follow immediately from the fact that normal rules form a part of the input language.

- The translations presented so far do not provide a polynomial time reduction from smodels programs to normal programs.
> However, the membership of STABLE in NP can be proved as in the case of normal programs using a similar NTM.
- For BRAVE and the complement of CAUTIOUS, the reductions $R_{1}(P, a)$ presented for normal programs apply as such.The language of lparse is of much higher time complexity.

3. ORDINALS AND TRANSFINITE INDUCTION

The definition of ordinal numbers, or ordinals for short, will be based on two properties of sets defined as follows:
Definition. A set S is transitive if and only if for every $e \in S, e \subseteq S$.
Example. For instance, the set $S=\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}$ is transitive because it holds that $\emptyset \subseteq S,\{\emptyset\} \subseteq S$, and $\{\emptyset,\{\emptyset\}\} \subseteq S$.
Definition. A binary relation $<\subseteq S \times S$ is a linear order $<$ on S if and only if $<$ is irreflexive, transitive, and connected, i.e., for every $e_{1}, e_{2} \in S, e_{1}<e_{2}, e_{1}=e_{2}$, or $e_{2}>e_{1}$.
Definition. A set S is well-ordered by a linear order $<$ if and only if for every $\emptyset \subset X \subseteq S$, there is the least element $x \in X$ with respect to $<$, i.e., for every $e \in X, x \leq e$.
(c) 2007 TKK / TCS

T-79.5102 / Autumn 2007
Complexity and Approximation

Ordinal Numbers

- An ordinal number S is a transitive set well-ordered by \in.
> Each well-ordered set is isomorphic to some ordinal (or order type).
- The class of all ordinals is well-ordered: $\alpha<\beta \Longleftrightarrow \alpha \in \beta$.
- If α and β are ordinals, then either $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$.
$>$ The sum $\alpha+\beta$ of two ordinals α and β denotes the concatenation of the respective well-orders.

Example. Natural numbers correspond to finite ordinals:

$$
0 \mapsto \emptyset, 1=0+1 \mapsto\{\emptyset\}, 2=1+1 \mapsto\{\emptyset,\{\emptyset\}\}, \ldots
$$

The set of all natural numbers corresponds to the least infinite ordinal $\omega=\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\},\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}, \ldots\}$.

Ordinals and Cardinals

Definition

1. The successor $\alpha+1$ of an ordinal α is the ordinal $\alpha \cup\{\alpha\}$.
2. If $\alpha=\beta+1$ for some ordinal β, then α is a successor ordinal.
3. An ordinal α which is not a successor ordinal is a limit ordinal.
4. If $|\alpha| \neq|\beta|$ for every ordinal $\beta<\alpha$, then α is a cardinal number.

Examples.

1. The first two limit ordinals are \emptyset and ω.
2. $2+\omega=\omega$ are $\omega+2$ are not isomorphic as well-ordered sets.
3. The ordinals $2=\{\emptyset,\{\emptyset\}\}$ and ω are cardinals but $\omega+2$ is not $(|\omega|=|\omega+2|)$.
(c) 2007 TKK / TCS

T-79.5102 / Autumn 2007
Complexity and Approximation

The Principle of Transfinite Induction

- Let $P(\alpha)$ be some property defined for an ordinal α.
> Proving the property $P(\alpha)$ for all ordinals α using transfinite induction consists of the following tree steps:

1. In the base case $\alpha=0$, it is proved that $P(0)$.
2. Then $P(\alpha+1)$ is proved for all successor ordinals $\alpha+1$ assuming that $P(\alpha)$ holds by the inductive hypothesis.
3. Finally, $P(\beta)$ is proved for all limit ordinals β using the inductive hypothesis that $P(\alpha)$ holds for all ordinals $\alpha<\beta$.

Remark. Transfinite induction is the basic method for proving properties of ordinals, or other objects indexed by ordinals.

4. WELL-FOUNDED SEMANTICS

Since reasoning with stable models is intractable in general, finding techniques that approximate such reasoning tasks is of interest.

- The well-founded semantics [Van Gelder et al., 1988] provides a sound approximation of stable models.
- Each normal program P is assigned a unique three-valued model that can be characterized in terms of the operator Γ_{P}.

Example. Suppose $M \subseteq \operatorname{Hb}(P)$ is a set of atoms which are known to be true for sure (initially this set could be \emptyset). Then

1. $\Gamma_{P}(M)=\operatorname{LM}\left(P^{M}\right)$ gives atoms that are potentially true, and
2. $\Gamma_{P}^{2}(M)=\Gamma_{P}\left(\Gamma_{P}(M)\right)$ gives atoms that are true for sure, again.

C 2007 TKK / TCS

$$
\text { T-79.5102 / Autumn } 2007 \text { Complexity and Approximation }
$$

Properties of the Approximation Operator Γ_{P}^{2}

The following results are formulated for normal programs P.
Proposition. The operator Γ_{P}^{2} is monotonic.
Proof. Consider any interpretations $M_{1} \subseteq M_{2} \subseteq \mathrm{Hb}(P)$. Since Γ_{P} is antimonotonic, we obtain $\Gamma_{P}\left(M_{2}\right) \subseteq \Gamma_{P}\left(M_{1}\right)$ and $\Gamma_{P}^{2}\left(M_{1}\right) \subseteq \Gamma_{P}^{2}\left(M_{2}\right)$

Corollary. The operator Γ_{P}^{2} has the least fixpoint $\operatorname{lfp}\left(\Gamma_{P}^{2}\right)$.

Proposition. For all $M \in \operatorname{SM}(P)$, $\operatorname{lfp}\left(\Gamma_{P}^{2}\right) \subseteq M \subseteq \Gamma_{P}\left(\operatorname{lfp}\left(\Gamma_{P}^{2}\right)\right)$
Proof. Consider any $M \in \operatorname{SM}(P)$. Let $M_{0}=\emptyset, M_{\alpha+1}=\Gamma_{P}^{2}\left(M_{\alpha}\right)$ for all successor ordinals $\alpha+1$ and $M_{\beta}=\bigcup_{\alpha<\beta} M_{\alpha}$ for all limit ordinals β.
Then $M_{\alpha} \subseteq M \subseteq \Gamma_{P}\left(M_{\alpha}\right)$ follows by transfinite induction for any α. $\quad \square$

The Well-Founded Model

> The operator Γ_{P} yields a lower and an upper bound for $\operatorname{SM}(P)$.

- The fixpoint lfp $\left(\Gamma_{P}^{2}\right)$ gives rise to a partial (three-valued) model, the well-founded model of P. Stable models are total (two-valued).
$>$ In contrast with $\operatorname{lfp}\left(\mathrm{T}_{P}\right)$, the fixpoint $\operatorname{lfp}\left(\Gamma_{P}^{2}\right)$ might not be reached with ω applications of Γ_{P}^{2}.

Definition. The well-founded model of a normal program P is characterized by $\operatorname{WFM}(P)=\operatorname{lfp}\left(\Gamma_{P}^{2}\right) \cup\left\{\sim a \mid a \in \operatorname{Hb}(P) \backslash \Gamma_{P}\left(\operatorname{lfp}\left(\Gamma_{P}^{2}\right)\right)\right\}$
Proposition. If $\operatorname{WFM}(P)$ is total, i.e., $\Gamma_{P}\left(\operatorname{lfp}\left(\Gamma_{P}^{2}\right)\right) \backslash \operatorname{lfp}\left(\Gamma_{P}^{2}\right)=\emptyset$, it holds that $\operatorname{SM}(P)=\left\{\operatorname{lfp}\left(\Gamma_{P}^{2}\right)\right\}$.

Example. For the normal program $P=\{a \leftarrow \sim a, \sim b$. $\}$, we have $\Gamma_{P}(\emptyset)=\{a\}$ and $\Gamma_{P}^{2}(\emptyset)=\emptyset$. Thus $\operatorname{WFM}(P)=\{\sim b\}$.
(c) 2007 TKK / TCS

T-79.5102 / Autumn 2007
Complexity and Approximation

Example

Consider the normal program $Q=$

$$
\begin{array}{rll}
\left\{a_{1} \leftarrow \sim a_{0} .\right. & a_{2} \leftarrow \sim a_{1} . & a_{3} \leftarrow \sim a_{2} . \\
b_{1} \leftarrow a_{3}, \sim b_{2} . & b_{2} \leftarrow a_{3}, \sim b_{1} . & \} .
\end{array}
$$

The construction of $\operatorname{lfp}\left(\Gamma_{Q}^{2}\right)$ proceeds as follows:

1. $\Gamma_{Q}(\emptyset)=\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}\right\}$ and $\Gamma_{Q}^{2}(\oslash)=\left\{a_{1}\right\}$.
2. $\Gamma_{Q}\left(\left\{a_{1}\right\}\right)=\left\{a_{1}, a_{3}, b_{1}, b_{2}\right\}$ and $\Gamma_{Q}^{2}\left(\left\{a_{1}\right\}\right)=\left\{a_{1}, a_{3}\right\}$.
3. $\Gamma_{Q}\left(\left\{a_{1}, a_{3}\right\}\right)=\left\{a_{1}, a_{3}, b_{1}, b_{2}\right\}$ and $\Gamma_{Q}^{2}\left(\left\{a_{1}, a_{3}\right\}\right)=\left\{a_{1}, a_{3}\right\}$.

Thus $\operatorname{lfp}\left(\Gamma_{Q}^{2}\right)=\left\{a_{1}, a_{3}\right\}$ and $\operatorname{WFM}(Q)=\left\{a_{1}, a_{3}, \sim a_{0}, \sim a_{2}\right\}$ which approximates the two stable models in
$\operatorname{SM}(Q)=\left\{\left\{a_{1}, a_{3}, b_{1}\right\},\left\{a_{1}, a_{3}, b_{2}\right\}\right\}$.

Transfinite Case

Example. Consider the infinite normal program $R=\operatorname{Gnd}(P)$ for a normal program P involving variables and function symbols:

$$
\begin{aligned}
R= & \left\{a_{i+1} \leftarrow \sim b_{i} . \quad b_{i} \leftarrow \sim a_{i} . \quad \mid i \geq 0\right\} \cup\left\{c \leftarrow a_{i} . \quad \mid i \geq 0\right\} \cup \\
& \left\{e_{i+1} \leftarrow \sim c, \sim d_{i} . \quad d_{i} \leftarrow \sim c, \sim e_{i} \mid i \geq 0\right\} .
\end{aligned}
$$

1. $\quad \Gamma_{R}^{2} \uparrow 0=0$.
2. $\Gamma_{R}^{2} \uparrow i=\left\{b_{j} \mid 0 \leq j<i\right\}$.
3. $\quad \Gamma_{R}^{2} \uparrow \omega=\left\{b_{j} \mid j \geq 0\right\}$.
4. $\quad \Gamma_{R}^{2} \uparrow \omega+i=\left\{b_{j} \mid j \geq 0\right\} \cup\left\{d_{j} \mid 0 \leq j<i\right\}$.
5. $\quad \Gamma_{R}^{2} \uparrow \omega+\omega=\left\{b_{j} \mid j \geq 0\right\} \cup\left\{d_{j} \mid j \geq 0\right\}=\operatorname{lfp}\left(\Gamma_{R}^{2}\right)$.

Thus $\operatorname{WFM}(R)=\left\{\sim a_{j} \mid j \geq 0\right\} \cup\left\{b_{j} \mid j \geq 0\right\} \cup\{\sim c\}$

$$
\cup\{d \mid j \geq 0\} \cup\left\{\sim e_{j} \mid j \geq 0\right\}
$$

© 2007 TKK / TCS

Complexity of Well-Founded Reasoning

The effects of approximation become also apparent in the computational complexities associated with the main reasoning tasks.

- Since the existence of the well-founded model is guaranteed the respective decision problem can be answered "yes" constantly.
> Moreover, there is no distinction between brave and cautious reasoning because the well-founded model is also unique.

Proposition. BRAVE $=$ CAUTIOUS is in P and P -hard/complete.
Proof. 1. It is possible to construct a DTM M which (i) computes $M=\operatorname{lfp}\left(\Gamma_{P}^{2}\right)$ for P and (ii) accepts the input $\langle P, a\rangle$ if and only if $a \in M$
2. For a set of Horn clauses $S, S \in$ SAT $\Longleftrightarrow R(S)=$ $\langle\{a \leftarrow B . \mid a \vee \neg B \in S\} \cup\{f \leftarrow B . \mid \neg B \in C\}, f\rangle \in$ CAUTIOUS.

OBJECTIVES

You are familiar with the basic concepts of computational complexity theory (classes P and NP, reductions, and completeness).

You know the computational complexity results associated with the main reasoning tasks of ASP.

- You know the basics of ordinals and the difference of (ordinary) finite induction and transfinite induction.You are able to define well-founded models for normal program and prove simple properties about them.You can calculate the well-founded model for simple normal logic programs (by applying Γ_{P}^{2} iteratively).
(c) 2007 TKK / TCS

T-79.5102 / Autumn 2007

TIME TO PONDER

Reconsider the technique of encoding AI planning problems and how the accepting computations of an NTM M, time-wise bounded by a polynomial p, could be described in terms of normal rules.

- What is the notion of a situation in the context of NTMs?
- Design a set of relation symbols for the description of situations.
- What kind of operators can be identified?
- How the length of a plan is determined?

