

10

Overall Goals for the Translation

➤ The translation of a restricted planning problem $\langle \mathcal{D}, \mathcal{O}, S_0, S_1, 1_k \rangle$ is a normal logic program LPlan_k($\mathcal{D}, \mathcal{O}, S_0, S_1$) such that

the problem $\langle \mathcal{D}, \mathcal{O}, S_0, S_1 \rangle$ has a solution of length at most k \iff LPlan_k $(\mathcal{D}, \mathcal{O}, S_0, S_1)$ has a stable model.

- Such a representation $\operatorname{LPlan}_k(\mathcal{D}, \mathcal{O}, S_0, S_1)$ is called *constructive* if there is a polytime algorithm for extracting a solution, i.e., a plan for $\langle \mathcal{D}, \mathcal{O}, S_0, S_1, 1_k \rangle$ from a model $M \in \operatorname{SM}(\operatorname{LPlan}_k(\mathcal{D}, \mathcal{O}, S_0, S_1))$.
- We aim at a straightforward representation using which plans can be recovered as simple projections of answer sets.

\odot 2007 TKK / TCS

Al Planning
Linear Plans
In the sequel, our approach is to describe the solutions *O*₁σ₁,..., *O*_nσ_n of a restricted planning problem ⟨D, O, S₀, S₁, 1_k⟩ with rules.
First, a *linear* notion of time will be used: exactly one action *O*_tσ_t will be accomplished at each point of time t ∈ {0, 1,...,k-1}.
An extra variable for time, namely t, is added to every relation symbol and operator: Clear(x,t), On(x,y,t), and MOVE(x,y,z,t).
For relation symbols, the time t varies in the range 0,...,k whereas for operators it is in the range 0,...,k-1.

11

Remarks on Computational Complexity

- > It is computationally very demanding to solve planning problems.
- ► Consider the following *decision problems*:
 - 1. PLANSAT: does the given planning problem $\langle \mathcal{D}, \mathcal{O}, S_0, S_1 \rangle$ have a solution?
 - 2. PLANMIN: does the given planning problem $\langle \mathcal{D}, \mathcal{O}, S_0, S_1 \rangle$ have a solution of length k—the limit k being part of the input?
- ► PLANSAT and PLANMIN are PSPACE-complete.

Remark. A way to govern computational complexity is to limit plan length to polynomial with respect to the length of the instance—the limit k is given in base 1. Such restricted problems are NP-complete.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

AI Planning

2. RESTRICTED PLANS AND ASP

- Consider the following NP-complete decision problem STABLE: Does the given normal logic program P have a stable model?
- As a consequence, any instance $\langle \mathcal{D}, \mathcal{O}, S_1, S_2, 1_k \rangle$ of the *restricted* planning problem can be *reduced* to an instance of STABLE.
- The complexity theory behind NP-completeness is only concerned with the preservation of yes/no-answers under reductions.
- ➤ A tight correspondence of answer sets and plans can be achieved when restricted planning problems are represented in ASP.
- In fact, the minimality of stable models and their strong groundedness simplify the representation of planning problems.

14

Describing Restricted Plans

The description of restricted plans comes in five parts:

- 1. Determining the initial situation (t = 0): $\{P(\vec{c}, 0) \mid P(\vec{c}) \in S_0\}$.
- 2. Things that must hold in the end (t = k): $\{P(\vec{c}, k) \mid P(\vec{c}) \in S_1\}$.
- 3. An action $O\sigma$ is performed at time t if its preconditions are satisfied and there are no exceptions to it. Consequently, things that become true $(Post(O)\sigma \setminus Pre(O)\sigma)$ hold at time t + 1.
- 4. Frame axioms: if $P(\vec{c})$ holds at time t and no action falsifies it at time t, it will hold at time t+1 as well.
- 5. At most one action $O_t \sigma_t$ is performed at each time step t, i.e., $O_t \sigma_t$ causes an exception to all other actions at time t.

© 2007 TKK / TCS

An Encoding of Blocks' World (II)

 \blacktriangleright The domain Block and its extension Object with f:

Block(a). Block(b). Block(c). Block(d). Object(x) \leftarrow Block(x). Object(f).

► A domain for triples of objects potentially subject to moves:

Diff $(x, y, z) \leftarrow \sim (x = y), \sim (x = z), \sim (y = z),$ Block(x), Object(y; z).

> Specify time points and objects that can hold a block:

Time(0). ... Time(k). CanHold(z, t) \leftarrow Clear(z, t), Block(z), Time(t).

 $CanHold(f,t) \leftarrow Time(t).$

 \odot 2007 TKK / TCS

T-79.5102 / Autumn 2007 Al Planning An Encoding of Blocks' World (III) 3. Applications of the operator MOVE: $MOVE(x,y,z,t) \leftarrow Clear(x,t), On(x,y,t), CanHold(z,t),$ $\sim DeniedMOVE(x,y,z,t), Diff(x,y,z), Time(t), t < k.$ $On(x,z,t+1) \leftarrow MOVE(x,y,z,t),$ Diff(x,y,z), Time(t;t+1). $Clear(y,t+1) \leftarrow MOVE(x,y,z,t),$ $Diff(x,y,z), \sim (y = f), Time(t;t+1).$ Remark. No rule for Clear(x,t+1) is needed as Clear(x,t) is a

Remark. No rule for Clear(x,t+1) is needed as Clear(x,t) is a precondition of MOVE(x,y,z,t) and the respective frame axiom will imply Clear(x,t+1).

15

16

T-79.5102 / Autumn 2007

18

An Encoding of Blocks' World (IV)

- 4. Frame axioms cover atomic sentences that remain true: $On(x,y,t+1) \leftarrow On(x,y,t), \sim RemoveOn(x,y,t),$ Block(x), Object(y), Time(t;t+1). $RemoveOn(x,y,t) \leftarrow MOVE(x,y,z,t),$ Diff(x,y,z), Time(t), t < k. $Clear(x,t+1) \leftarrow Clear(x,t), \sim RemoveClear(x,t),$ Block(x), Time(t;t+1).
 - $\mathsf{RemoveClear}(z,t) \leftarrow \mathsf{MOVE}(x,y,z,t),$
 - $\operatorname{Diff}(x, y, z), \sim (z = f), \operatorname{Time}(t), t < k.$
 - © 2007 ТКК / ТСS

AI Planning

An Encoding of Blocks' World (V)

5. Enforcing the *linearity* of plans, i.e., only one action can be performed at a time which is expressed using exceptions.

$$\begin{split} \mathsf{DeniedMOVE}(x,y,z,t) &\leftarrow \mathsf{MOVE}(u,v,w,t), \sim &(x=u), \\ \mathsf{Diff}(x,y,z), \mathsf{Diff}(u,v,w), \mathsf{Time}(t), \ t < k. \\ \mathsf{DeniedMOVE}(x,y,z,t) &\leftarrow \mathsf{MOVE}(u,v,w,t), \sim &(y=v), \\ \mathsf{Diff}(x,y,z), \mathsf{Diff}(u,v,w), \mathsf{Time}(t), \ t < k. \\ \mathsf{DeniedMOVE}(x,y,z,t) &\leftarrow \mathsf{MOVE}(u,v,w,t), \sim &(z=w), \\ \mathsf{Diff}(x,y,z), \mathsf{Diff}(u,v,w), \mathsf{Time}(t), \ t < k. \end{split}$$

Remark. The number of rules that encode exceptions to moves grows fast as the number of blocks grows (to be addressed below).

An Encoding of Blocks' World (VI)

AI Planning

Preceding rules state that exactly one move is made at each time step.

5. By allowing *self-exceptions*, which effectuate a form of *choice*, we capture the *at most one action* aspect of the specification:

 $\mathsf{DeniedMOVE}(x, y, z, t) \leftarrow \sim \mathsf{MOVE}(x, y, z, t),$

Diff(x, y, z), Time(t), t < k.

Alternatively, any of the final situations can cause an exception:

DeniedMOVE $(x, y, z, t) \leftarrow$ GoalReached(t),

Diff(x, y, z), Time(t), t < k.

GoalReached(t) \leftarrow On(b, a, t), Time(t), t < k.

Remark. If there were additional operators in this domain, also interoperator conflicts would have to be formalized using rules of this kind.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

AI Planning

20

3. IMPROVEMENTS ON THE ENCODING

- The length of the resulting ground program can be decreased by splitting operators, viewed as special relations, in parts.
- > The same technique can be applied to other relation symbols.
- ➤ Yet another strategy is to give up the linearity of plans: mutually independent actions can be performed concurrently.
- > Plans can be further enhanced in terms of additional constraints.

Example. Forbid two subsequent moves of the same block:

 $\leftarrow \mathsf{MOVE}(x, y, z, t), \mathsf{MOVE}(x, z, u, t+1),$ $\mathsf{Diff}(x, y, z), \mathsf{Diff}(x, z, u), \mathsf{Time}(t; t+1).$

T-79.5102 / Autumn 2007

Splitting Operators

- Operators with multiple arguments increase the size of the resulting encoding and, in particular, its ground instance.
- ➤ A way to govern combinatorial explosion in the encoding is to split the respective relations in component relations as far as possible.

Example. In the Blocks' world domain, the relation MOVE(x, y, z, t) can be split into TGT(x, t), SRC(y, t), and DST(z, t) using t as a key:

 $\begin{aligned} \mathsf{MOVE}(x, y, z, t) \leftarrow \mathsf{TGT}(x, t), \, \mathsf{SRC}(y, t), \, \mathsf{DST}(z, t), \\ \mathsf{Diff}(x, y; z), \, \mathsf{Time}(t), \ t < k. \end{aligned}$

But this rule is not included in the program: MOVE(x, y, z, t) is defined *implicitly* in terms of TGT(x, t), SRC(y, t), and DST(z, t).

© 2007 TKK / TCS

AI Planning

Definition of MOVE after Splitting (I)

1. Selection of the action to be performed at time t:

$$\begin{split} \mathsf{Diff}(x,y) &\leftarrow \mathsf{Block}(x), \mathsf{Object}(y), \sim &(x = y). \\ \mathsf{TGT}(x,t) &\leftarrow \mathsf{Clear}(x,t), \mathsf{On}(x,y,t), \sim \mathsf{DeniedTGT}(x,t), \\ \mathsf{Diff}(x,y), \mathsf{Time}(t), \ t < k. \\ \mathsf{SomeTGT}(t) &\leftarrow \mathsf{TGT}(x,t), \mathsf{Block}(x), \mathsf{Time}(t), \ t < k. \\ \mathsf{SRC}(y,t) &\leftarrow \mathsf{TGT}(x,t), \mathsf{On}(x,y,t), \mathsf{Diff}(x,y), \mathsf{Time}(t), \ t < b \\ \mathsf{DST}(z,t) &\leftarrow \mathsf{CanHold}(z,t), \sim \mathsf{DeniedDST}(z,t), \\ \mathsf{Object}(z), \mathsf{Time}(t), \ t < k. \end{split}$$

2. Things that become true once this action is performed:

$$\begin{split} &\mathsf{On}(x,z,t+1) \leftarrow \mathsf{TGT}(x,t), \mathsf{DST}(z,t), \mathsf{Diff}(x,z), \mathsf{Time}(t;t+1).\\ &\mathsf{Clear}(y,t+1) \leftarrow \mathsf{SRC}(y,t), \mathsf{Block}(y), \sim &(y=f), \mathsf{Time}(t;t+1). \end{split}$$

Definition of MOVE after Splitting (II)

2. Avoiding conflicts with other actions (uniqueness of moves):

$$\begin{split} & \mathsf{DeniedTGT}(x,t) \leftarrow \mathsf{TGT}(y,t), \\ & \mathsf{Block}(x;y), \sim & (y=x), \mathsf{Time}(t), \ t < k. \\ & \mathsf{DeniedTGT}(x,t) \leftarrow \sim \mathsf{TGT}(x,t), \mathsf{Block}(x), \mathsf{Time}(t), \ t < k. \\ & \mathsf{DeniedDST}(z,t) \leftarrow \mathsf{DST}(y,t), \\ & \sim & (z=y), \mathsf{Object}(y;z), \mathsf{Time}(t), \ t < k. \\ & \mathsf{DeniedDST}(x,t) \leftarrow \mathsf{TGT}(x,t), \mathsf{Block}(x), \mathsf{Time}(t), \ t < k. \\ & \mathsf{DeniedDST}(y,t) \leftarrow \mathsf{SRC}(y,t), \mathsf{Object}(y), \mathsf{Time}(t), \ t < k. \\ & \mathsf{DeniedDST}(z,t) \leftarrow \sim \mathsf{SomeTGT}(t), \mathsf{Time}(t), \ t < k. \end{split}$$

Remark. The predicate SomeTGT(t) is used to prohibit the choice of the destination object whenever no block is going to be moved.

© 2007 TKK / TCS

	sitive	e Effec	ts of S	Splitt	ing			
k n			Positive Effects of Splitting					
	1	r_1	<i>t</i> ₁	<i>r</i> ₂	<i>t</i> ₂			
1 0	! !	5764	0.092	199	0.004			
2 2		11458	0.180	356	0.004			
3 16	6	17152	0.288	513	0.012			
4 10	07	22846	0.528	670	0.048			
5 67	78 2	28540	1.520	827	0.192			
6 42	249	34234	5.560	984	1.024			
<i>n</i> : Number of pl	lans							
1). r _i : Nuber of rule	es in th	he groun	d progra	am (1=	=before, 2=a			
. t _i : Running time	e of sm	models	for comp	outing	all plans			

OBJECTIVES

- You understand the definition of the planning problem as well as that of its solutions.
- You are aware of the high computational complexity involved in planning problems in general.
- > You are able to solve a simple planning problem
 - 1. by representing it as a normal logic program,
 - 2. by computing answer sets for the program, and
 - 3. by extracting concrete plans from the answer sets found.

© 2007 TKK / TCS

- Partial vs. Linear Orders of Time
- By allowing several concurrent and mutually independent actions simultaneously, we obtain plans that are partial orders of actions.
- Savings are expected as the required number of time steps is likely to be smaller than the length of the respective linear plan.
- ➤ Given a partial plan, a linear plan is obtained by taking any linear order of actions which is compatible with the partial order.

 $\begin{array}{c} \swarrow & \mathsf{MOVE}(b,f,a) \\ \mathsf{MOVE}(a,b,c) \leq & \mathsf{MOVE}(b,a,d) \\ & \swarrow & \mathsf{MOVE}(d,f,e)^{\swarrow} \end{array} \end{array}$

 $\begin{cases} \mathsf{MOVE}(a,b,c) < \mathsf{MOVE}(b,f,a) < \mathsf{MOVE}(d,f,e) < \mathsf{MOVE}(b,a,d) \\ \mathsf{MOVE}(a,b,c) < \mathsf{MOVE}(d,f,e) < \mathsf{MOVE}(b,f,a) < \mathsf{MOVE}(b,a,d) \end{cases}$

AI Planning

Blocks' World Strikes Again

- The concurrent execution of moves is forbidden only in case of a real conflict (two actions share a resource).
- ► A block cannot be moved to two different destinations: DeniedMOVE $(x, y, z, t) \leftarrow MOVE(x, y, u, t), \sim (z = u),$ Diff(x, y, z), Diff(x, y, u), Time(t), t < k.
- Two different blocks cannot be moved to the same destination: DeniedMOVE $(x, y, z, t) \leftarrow MOVE(u, v, z, t), \sim (x = u),$ Diff(x, y, z), Diff(u, v, z), Time(t), t < k.
- > A block cannot be moved to a destination that is being moved:

$$\begin{split} \mathsf{DeniedMOVE}(x,y,z,t) &\leftarrow \mathsf{MOVE}(z,u,v,t), \\ \mathsf{Difff}(x,y,z), \mathsf{Diff}(z,u,v), \mathsf{Time}(t), \ t < k. \end{split}$$

28