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Lecture 6: Al PIanningI

1. Planning problems
2. Restricted plans and ASP

3. Improvements on the encoding
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Formal Definition I

A planning problem is a quadruple (D, 0,S,S1) defined as follows:

0 The members of each finite domain D € D have been uniquely
named with a set of naming constants {a,b,c,...}.

O Every operator O(X,Y,z,...) € O consists of

1. domain definitions for its variables X: D1, y: Dy, z: D3, ..., and

2. sets of preconditions Pre(O) and postconditions Post(O) which
are sets of atomic, well-formed, and typed formulas built from
relation symbols P, Q, ..., variables X, y, z, ...and constants
a,b,c,... associated with specific domains.

O The initial situation S and final situation S are sets of ground
(variable-free) atomic formulas, i.e., atomic sentences.
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1. PLANNING PROBLEMSI

O Planning problems from the area of artificial intelligence (Al) form

a computationally challenging application domain for ASP.

O It is difficult to tailor special-purpose algorithms designed to solve

planning problems for new application domains.

O A more flexible representation can be obtained by describing

planning problems in terms of (propositional) logic.

O Logical descriptions tend to become large due to a frame problem

or the law of inertia: things do not change without a cause.

0 Logic programs under stable models provide a promising way to
tackle the complexity of expressing knowledge of this kind.
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Example: Blocks’ World (I)I

O The domain Block is named by constants {a,b,c,d}.

0 There is an additional object, the floor denoted by f, which
cannot be moved and which can hold multiple blocks.

O The initial situation is given by
S ={On(a,b),0On(b,c),On(c, f),On(d, ), Clear(a), Clear(d)}.
O The goal is determined by the set of conditions S = {On(b,a)}.

2] b]
b = M = |a|]
d]| .
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Example: Blocks’ World (II)I

O Block is the domain of variables X, y, and z below.

O There is only one operator MOVE(X,Y, 2):
1. Pre(MOVE(x,y,2)) = {Clear(x),On(x,y),Clear(z)} and
2. Post(MOVE(x,Y,2)) = {On(x,2), Clear(x), Clear(y)}.
O For moving blocks on the floor, we need MOVE(X,y, f) with y # f
1. Pre(MOVE(x,y, f)) = {Clear(x),On(x,y)} and
2. Post(MOVE(x,y, f)) = {On(x, f), Clear(x), Clear(y)}.
O Another special case is MOVE(X, f,2) where z# f:
1. Pre(MOVE(x, f,z)) = {Clear(x),On(x, f),Clear(2)} and
2. Post(MOVE(X, f,2z)) = {On(x,2), Clear(x)}.

\_
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Plans as Solutions.

O An operator O(X,Y,Z...) € O can be instantiated by applying a
substitution 6 = {x/c1,y/C2,Z/C3,...} where C1,Cp,C3,... are some
naming constants from the respective domains D1,D2,D3,....

O An individual action Oa, i.e., a ground instance of an operator
O(X) € O, can take place in a situation Swhere Pre(O)o C S
O The outcome of performing an action in Sis a revised situation
S = (S\ Pre(O)o) UPost(0)o
to be denoted by S22 S in the sequel.
Definition. A solution to a planning problem (D, 0,%,S) is a

sequence of actions 0101,...,0Or0p, i.e., a plan that turns the initial

. . . . . P O O
situation S into a situation Ssatisfying 5 CS § 2% o g
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Example: Blocks’ World (III)I

The sequence of actions MOVE(a,b,d) and MOVE(b, c,a) forms a

valid plan and a solution to the problem in question:
{On(a,b),On(b,c),On(c, f),On(d, f),Clear(a), Clear(d) }

MOVERLD (b, c),On(c, f),0n(a,d),On(d, f), Clear(a), Clear(b)}

MOYE®SA (O (c, £),0n(b,a),On(a,d),On(d, f), Clear(c), Clear(b)}.

o
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Example: Blocks' World (IV)I

The pre- and postconditions for the actions involved are:

1. Pre(MOVE(a,b,d)) = {Clear(a),On(a,b),Clear(d)}
Post(MOVE(a,b,d)) = {On(a,d), Clear(a), Clear(b)}

2. Pre(MOVE(b,c,a)) = {Clear(b),On(b,c),Clear(a)}
Post(MOVE (b, c,a)) = {On(b,a), Clear(b), Clear(c)}

Q
[+ ]
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Remarks on Computational Complexity'

O It is computationally very demanding to solve planning problems.

Al Planning

O Consider the following decision problems:

1. PLANSAT: does the given planning problem (D, 0,%,S)
have a solution?

2. PLANMIN: does the given planning problem (D, 0,S,S;) have
a solution of length k—the limit k being part of the input?
O PLANSAT and PLANMIN are PSPACE-complete.

Remark. A way to govern computational complexity is to limit plan
length to polynomial with respect to the length of the instance—the
limit K is given in base 1. Such restricted problems are NP-complete.

- J
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2. RESTRICTED PLANS AND ASP'

O Consider the following NP-complete decision problem STABLE:

Al Planning

Does the given normal logic program P have a stable model?

O As a consequence, any instance (D, 0,S,S, 1) of the restricted
planning problem can be reduced to an instance of STABLE.

O The complexity theory behind NP-completeness is only concerned
with the preservation of yes/no-answers under reductions.

O A tight correspondence of answer sets and plans can be achieved
when restricted planning problems are represented in ASP.

O In fact, the minimality of stable models and their strong
groundedness simplify the representation of planning problems.

- J
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Overall Goals for the Translation.

O The translation of a restricted planning problem (D, 0,%,S1, 1)
is a normal logic program LPlank(D, 0,S,S;) such that
the problem (D, 0,%,S1) has a solution of length at most k
<— LPan (D, 0,%,S) has a stable model.

O Such a representation LPlank(D, 0,%,S) is called constructive if
there is a polytime algorithm for extracting a solution, i.e., a plan

for (D, 0,%,S1, k) from a model M € SM(LPlank(D, 0,%,S1)).

0 We aim at a straightforward representation using which plans can
be recovered as simple projections of answer sets.
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Linear PIansI

O In the sequel, our approach is to describe the solutions
C)]_O-]_7 ey Oncn
of a restricted planning problem (D, 0,%,S;, 1k) with rules.

O First, a linear notion of time will be used: exactly one action O;C¢
will be accomplished at each point of time t € {0,1,... k—1}.

0 An extra variable for time, namely t, is added to every relation
symbol and operator: Clear(x,t), On(x,y,t), and MOVE(x,y,zt).

O For relation symbols, the time t varies in the range O,... kK
whereas for operators it is in the range O,...,k— 1.
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Describing Restricted PIansI

The description of restricted plans comes in five parts:
1. Determining the initial situation (t =0): {P(C,0) | P(C) € S}.
2. Things that must hold in the end (t =Kk): {P(C,k) | P(C) € S }.

3. An action O0 is performed at time t if its preconditions are
satisfied and there are no exceptions to it. Consequently, things
that become true (Post(O)a \ Pre(O)o) hold at time t + 1.

4. Frame axioms: if P(C) holds at time t and no action falsifies it at
time t, it will hold at time t+ 1 as well.

5. At most one action O;0y is performed at each time step t, i.e.,
010t causes an exception to all other actions at time t.
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An Encoding of Blocks” World (I)I

1. Initial situation S:
On(a,b,0). On(b,c,0). On(c,f,0). On(d,f,0).
Clear(a,0). Clear(d,0).
2. Final situation S; with the parameter k:
— ~On(b,a,k).

a|
b = M = |a]
[d]
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An Encoding of Blocks' World (II)I

0 The domain Block and its extension Object with f:
Block(a). Block(b). Block(c). Block(d).
Object(X) «— Block(x). Object(f).

0 A domain for triples of objects potentially subject to moves:

Diff(x,y,2) <= ~(x=Y), ~(x=2), ~(y = 2),
Block(x), Object(y; 2).

0 Specify time points and objects that can hold a block:
Time(0). ... Time(k).
CanHold(zt) « Clear(z 1), Block(z), Time(t).
CanHold(f,t) « Time(t).
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An Encoding of Blocks” World (III)I

3. Applications of the operator MOVE:
MOVE(X,y,zt) « Clear(x,t), On(x,y,t), CanHold(zt),
~DeniedMOVE(X,Y, z,t), Diff(x,y,2), Time(t), t <k.
On(x,zt+1) — MOVE(X,Y, zt),
Diff(x,y,2), Time(t;t+1).
Clear(y,t +1) «— MOVE(x,y,zt),
Diff(x,y,2), ~(y= f), Time(t;t +1).

Remark. No rule for Clear(x,t + 1) is needed as Clear(x;t) is a
precondition of MOVE(X,Y,z 1) and the respective frame axiom will
imply Clear(x,t+1).

\_
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An Encoding of Blocks” World (IV)I

4. Frame axioms cover atomic sentences that remain true:
On(x,y,t+1) < On(X,y,t), ~RemoveOn(X,y,t),
Block(x), Object(y), Time(t;t+1).
RemoveOn(x,y,t) < MOVE(x,y,zt),
Diff(x,y,2), Time(t), t <k.

Clear(x,t 4 1) « Clear(x,t), ~RemoveClear(x,t),
Block(x), Time(t;t+1).

RemoveClear(zt) < MOVE(x,y,z 1),
Diff(x,y,2), ~(z= f), Time(t), t <k
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An Encoding of Blocks' World (V)I

5. Enforcing the linearity of plans, i.e., only one action can be
performed at a time which is expressed using exceptions.

DeniedMOVE(X,y,z,t) < MOVE(u,v,w,t), ~(X=u),
Diff(x,y, z), Diff (u,v,w), Time(t), t <k.

DeniedMOVE(X,y,z,t) < MOVE(u,v,w,t), ~(y = V),
Diff(X,Y, 2), Diff (u,v,w), Time(t), t <k.

DeniedMOVE(X,y,z,t) — MOVE(u,v,w,t), ~(z=w),
Diff(x,Y, 2), Diff (u,v,w), Time(t), t <k.

Remark. The number of rules that encode exceptions to moves

\_

grows fast as the number of blocks grows (to be addressed below).

J
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An Encoding of Blocks' World (VI)I

5. By allowing self-exceptions, which effectuate a form of choice, we
capture the at most one action aspect of the specification:
DeniedMOVE(X,y,z,t) < ~MOVE(X,Y,z1),
Diff(x,y,2), Time(t), t <k.
Alternatively, any of the final situations can cause an exception:
DeniedMOVE(X,Y,z,t) < GoalReached(t),
Diff(x,y,2), Time(t), t <k.
GoalReached(t) < On(b,a,t), Time(t), t <k.

Remark. If there were additional operators in this domain, also inter-

operator conflicts would have to be formalized using rules of this kind.

\_

Preceding rules state that exactly one move is made at each time step.

~

J
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3. IMPROVEMENTS ON THE ENCODINGI

O The length of the resulting ground program can be decreased by
splitting operators, viewed as special relations, in parts.

0 The same technique can be applied to other relation symbols.

0 Yet another strategy is to give up the linearity of plans: mutually
independent actions can be performed concurrently.

O Plans can be further enhanced in terms of additional constraints.

Example. Forbid two subsequent moves of the same block:

— MOVE(x,y,zt), MOVE(X,z,u,t + 1),
Diff(x,Y, 2), Diff(x,z,u), Time(t;t + 1).

~
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Splitting Operators'

O Operators with multiple arguments increase the size of the

resulting encoding and, in particular, its ground instance.

O A way to govern combinatorial explosion in the encoding is to split
the respective relations in component relations as far as possible.

Example. In the Blocks' world domain, the relation MOVE(X,Y, z 1)
can be split into TGT(x,t), SRC(y,t), and DST(zt) using t as a key:
MOVE(x,y,zt) — TGT(x,t), SRC(y,t), DST(z1),
Diff(x,y;2), Time(t), t <k.
But this rule is not included in the program: MOVE(X,Y,z1) is defined
implicitly in terms of TGT(x,t), SRC(y,t), and DST(z1).

- J
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Definition of MOVE after Splitting (I)I

1. Selection of the action to be performed at time t:
Diff (x,y) < Block(x), Object(y), ~(X=Y).
TGT(x,t) « Clear(x,t), On(x,y,t), ~Denied TGT(x,1),
Diff(x,y), Time(t), t <k.
SomeTGT(t) < TGT(x,t), Block(x), Time(t), t <k
SRC(y,t) «— TGT(x,t), On(x,y,t), Diff(x,y), Time(t), t <k.
DST(zt) « CanHold(zt), ~DeniedDST(z 1),
Object(z), Time(t), t <k

Al Planning

2. Things that become true once this action is performed:
On(x,z,t+1) — TGT(x,t), DST(z 1), Diff(x,2), Time(t;t 4+ 1).
Clear(y,t +1) « SRC(y,t), Block(y), ~(y = f), Time(t;t +1).

- J
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Definition of MOVE after Splitting (II)I

2. Avoiding conflicts with other actions (uniqueness of moves):

Denied TGT(x,t) < TGT(y,t),

Block(x;y), ~(y=X), Time(t), t <k.
Denied TGT(X,t) < ~TGT(X,t), Block(x), Time(t), t <k.
DeniedDST(zt) < DST(y,t),

~(z=Y), Object(y;z), Time(t), t <k
DeniedDST(x,t) < TGT(x,t), Block(x), Time(t), t <k
DeniedDST(y,t) «+— SRC(y,t), Object(y), Time(t), t <k.
DeniedDST(zt) < ~SomeTGT (t), Time(t), t <k.

Remark. The predicate SomeTGT (t) is used to prohibit the choice of
the destination object whenever no block is going to be moved.

~

J
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Positive Effects of SpIittingI
k|n r 12} ro o
110 5764  0.092 | 199 0.004
2|2 11458 0.180 | 356 0.004
3116 17152 0.288 | 513 0.012
4 | 107 | 22846 0.528 | 670 0.048
51| 678 28540 1520 | 827 0.192
6 | 4249 | 34234 5560 | 984 1.024
n: Number of plans
ri: Nuber of rules in the ground program (1=before, 2=after)
ti: Running time of snodel s for computing all plans
- J
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Partial vs. Linear Orders of Time.

O By allowing several concurrent and mutually independent actions
simultaneously, we obtain plans that are partial orders of actions.

0 Savings are expected as the required number of time steps is likely
to be smaller than the length of the respective linear plan.

O Given a partial plan, a linear plan is obtained by taking any linear
order of actions which is compatible with the partial order.
L, MOVE(b, f,a) -
MOVE(a,b,c) < MOVE(b,a,d) =—
3 MOVE(d, f,e)7

MOVE(a,b,c) < MOVE(b, f,a) < MOVE(d, f,e) < MOVE(b,a,d)
MOVE(a,b,c) < MOVE(d, f,e) < MOVE(b, f,a) < MOVE(b,a,d)

J
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0 The concurrent execution of moves is forbidden only in case of a

O A block cannot be moved to two different destinations:

O Two different blocks cannot be moved to the same destination:

O A block cannot be moved to a destination that is being moved:

Blocks’ World Strikes Again'

real conflict (two actions share a resource).

DeniedMOVE(X,y,z,t) — MOVE(X,Y,u,t), ~(z=u),
Diff(x,y,2), Diff(x,y,u), Time(t), t <k.

DeniedMOVE(X,y,z,t) «— MOVE(u,Vv,zt), ~(X=u),
Diff(x,y,2), Diff(u,v,z), Time(t), t <k.

DeniedMOVE(x,y,z,t) «— MOVE(zu,Vv,t),
Difff(x,y, 2), Diff(z,u,v), Time(t), t <k.
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OBJECTIVES '

O You understand the definition of the planning problem as well as
that of its solutions.

O You are aware of the high computational complexity involved in
planning problems in general.

O You are able to solve a simple planning problem
1. by representing it as a normal logic program,
2. by computing answer sets for the program, and

3. by extracting concrete plans from the answer sets found.
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TIME TO PONDERI

Partial plans are not directly applicable if the operators involved are
split in the way described above.

e Why is this the case?

e What kind of modifications are necessary in order to apply the two
techniques simultaneously?

4 N
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