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Le
ture 5: Modelling Aspe
ts

Outline1. An appli
ation: produ
t 
on�guration2. Prin
iples for relation design
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1. AN APPLICATION:PRODUCT CONFIGURATION

➤ Produ
t 
on�guration has been a resear
h topi
 in the area ofarti�
ial intelligen
e (AI) sin
e 1980s.

➤ At present, it is already a 
ommer
ially su

essful appli
ation ofAI and ASP in parti
ular, see e.g. http://www.variantum.com/.
➤ Produ
t 
on�guration domain exhibits dynami
 aspe
ts whi
h aredi�
ult to model using ordinary 
onstraint satisfa
tion (CSP).
➤ The rule types of the smodels system were developed in 
lose
ooperation with experts from the produ
t 
on�guration domain.
➤ As demonstrated below, they lend themselves for representingknowledge that is typi
ally involved in 
on�guration models.
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Con�guration Models

➤ Typi
al 
on�guration models 
ombine a number of requirements,
onditional 
hoi
es, and 
onstraints with minimality.
➤ Given these features of 
on�guration modelling, it is nontrivial tode�ne whi
h sets of 
omponents represent valid 
on�gurations.
➤ The situation be
omes more 
omplex if a form of optimization(produ
tion 
osts, pri
es, 
apa
ities, . . . ) is ne
essary.
➤ The basi
 fun
tionalities of a produ
t 
on�gurator in
lude:1. 
he
king whether a 
on�guration is valid with respe
t to a
on�guration model, and2. generating one or all valid 
on�gurations for a 
on�gurationmodel augmented by a set of additional requirements.
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Example

Consider the problem of 
on�guring a personal 
omputer (PC):1. PC 
omponents in
lude various kinds of CPUs, hard disks,CD/DVD ROMs, display 
ontrollers, keyboards, 
onne
tors, et
.2. Typi
ally, at least one mass storage unit is required for a PC:either an IDE hard disk, SCSI hard disk, or an external USB disk.3. The layout of the keyboard must be sele
ted.4. Optionally/by default, a CD/DVD ROM drive 
ould be in
luded.5. The 
hoi
e of a SCSI disk implies a SCSI 
ontroller for the PC.
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Forms of Con�guration Knowledge

➤ A typi
al 
on�guration model represents a number of 
hoi
es for
omponents to be in
luded in a valid 
on�guration.

➤ Choi
es may depend dynami
ally on ea
h other.

➤ Examples of other relevant pie
es of knowledge:1. A set of elements requires the presen
e of some other element.2. A set of elements is mutually in
ompatible.3. An element is optional.4. An element is in
luded by default.

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Modelling aspe
ts 6

Con�guration Rule Language

A number of rule types are useful for representing 
on�gurationknowledge to form rule-based models of 
on�gurable produ
ts:

a← b1, . . . ,bn,∼c1, . . . ,∼cm. Requirements (Rr)

a1 | . . . |ah← b1, . . . ,bn,∼c1, . . . ,∼cm. Choi
es (Rc)

a1⊕ . . .⊕ah← b1, . . . ,bn,∼c1, . . . ,∼cm. Ex
lusive 
hoi
es (Re)
← b1, . . . ,bn,∼c1, . . . ,∼cm. In
ompatibilities (Ri)

➤ A 
on�guration model R is a union Rr ∪Rc∪Re∪Ri of rules.
➤ A shorthand B,∼C is introdu
ed for rule bodies

b1, . . . ,bn,∼c1, . . . ,∼cm.
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Semanti
s in BriefDe�nition. A set S of 
omponents satis�es a rule body B,∼C i�
B⊆ S and C∩S = /0. The satisfa
tion of heads is summarized below.1. S |= a ⇐⇒ a ∈ S.2. S |= a1 | . . . |ah ⇐⇒ {a1, . . . ,ah}∩S 6= /0.3. S |= a1⊕ . . .⊕ah ⇐⇒ |{a1, . . . ,ah}∩S|= 1.4. S 6|=⊥.De�nition. The set RS of redu
ed rules 
ontains a← B i� a appearsin the head of the respe
tive rule, S |= a, and S |=∼C.De�nition. A 
on�guration S is R-valid i� S = LM(RS) and S |= R.Remark. The last requirement for R-validity enfor
es the satisfa
tionof 
on�guration rules in R! 
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Example

Consider a set of rules R for 
on�guring 
omputer hardware:

Computer.

IDEdisk |SCSIdisk |Floppy← Computer.

FinKB ⊕ EngKB← Computer.

SCSIcontroller← SCSIdisk.

➤ Test the R∪{FinKB. }-validity of the sets below:

S1 = {Computer,SCSIdisk}.

S2 = {Computer, IDEdisk,FinKB,SCSIcontroller}.

S3 = {Computer,SCSIdisk,FinKB,SCSIcontroller}.

➤ Determine LM((R∪{FinKB. })S3) and verify S3 |= R∪{FinKB. }.
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Translation into ASP

➤ Con�guration rules for requirements and in
ompatibilities 
an bedire
tly viewed as normal rules and 
onstraints.

➤ (Ex
lusive) 
hoi
es 
an be expressed using 
hoi
e rules havinglower and/or upper bounds:

a1 | . . . |ah← B,∼C. ; 1{a1, . . . ,ah}← B,∼C.

a1⊕ . . .⊕ah← B,∼C. ; 1{a1, . . . ,ah}1← B,∼C.

➤ Minimize/maximize statements 
apture optimization 
riteria.

➤ Let Tr(R) denote the respe
tive translation of a 
on�gurationmodel R where bounds have been removed from the heads of rules.Theorem. A set of 
omponents S is R-valid i� Tr(S) ∈ SM(Tr(R)).
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2. PRINCIPLES FOR RELATION DESIGN

➤ The semanti
s of answer set programs that involve variables andrelation symbols is de�ned in terms of Herbrand interpretations:

∀M ⊆ Hb(P): M ∈ SM(P) i� M = LM(Gnd(P)M).

➤ Given a stable model M ⊆ Hb(P) and a relation symbol R of arity
n, one 
an re
over the interpretation of R over Hu(P) by setting

RM = {〈t1, . . . ,tn〉 | R(t1, . . . ,tn) ∈M}.
➤ Thus any logi
 program 
an be viewed as a de�nition of a set ofrelations�whose design deserves a good deal of attention as su
h.
➤ Also, prin
iples from relational database design 
an be appliedwhile keeping in mind the relationship between SQL and rules.


© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Modelling aspe
ts 11

Domain Spe
i�
ations

➤ It is good to know/estimate the 
ardinalities of the domains of thevariables involved in a program.

➤ Su
h an analysis provides a basis for estimating the size of
Gnd(P)�or the number of instan
es of individual rules.Example. Re
all a snapshot from our SuDoku program:

Number(1). . . . Number(9).

Border(1). Border(4). Border(7).

Region(X ,Y )← Border(X), Border(Y ).For the least model M of the respe
tive ground program:

|NumberM|= 9, |BorderM|= 3, and |RegionM|= 3×3 = 9.
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Complexity of Individual Rules

➤ Ea
h rule of a logi
 program is a part of the de�nition(s) ofrelation symbol(s) mentioned in its head.

➤ Given the domains of global variables x1, . . . ,xn that appear in arule r, the rule 
an be viewed as a relation Gnd(r) over Hu(P):

〈t1, . . . ,tn〉 ∈ Gnd(r) i� r(t1, . . . ,tn) ∈ Gnd(P)where r(t1, . . . ,tn) = r{x1/t1, . . . ,xn/tn}.

➤ Re
all that Gnd(r) = Hu(P)n by the de�nition of Gnd(P) butintelligent grounders try to generate far fewer instan
es of r.

➤ Su
h a sound optimization a
tivity relies on the knowledge aboutthe domains of variables x1, . . . ,xn involved in a rule.
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Example

To this end, let us analyze rules from the SuDoku program on thebasis of the domain sizes that were just pointed out.

➤ Sin
e |Number|= 9, we will get 92 = 81 instan
es of the 
onstraint

← 2{Value(x,y,n) | Number(n)},Number(x;y).

➤ Note that n above is a lo
al variable that will in
rease the numberof 
onditions in the 
ardinality 
onstraint up to |Number|= 9.

➤ The number of instan
es is |Number|× |Region|= 92 = 81 for

1{Value(x,y,n) | Number(x;y), x1≤ x≤ x1+2,

y1≤ y≤ y1+2}1← Number(n), Region(x1,y1).

➤ Ea
h 
hoi
e involves 32 = 9 instan
es of the Value predi
ate.
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Splitting Relations

➤ Suppose that the �rst k < n arguments of an n-ary relation symbol

R provide a key for the tuples involved in the respe
tive relation.

➤ Su
h a relation 
an be split into n− k relations of arity k +1:

〈t1, . . . ,tn〉 ∈ RM i�

〈t1, . . . ,tk, tk+1〉 ∈ RM
1 and . . . and 〈t1, . . . ,tk, tn〉 ∈ RM

n−k.
➤ The relation symbols R1, . . . ,Rn−k have less arguments and savespa
e if the introdu
tion of unne
essary variables is avoided.
➤ It is possible to re
over R in terms of a rule

R(x1, . . . ,xk,xk+1, . . . ,xn)←

R1(x1, . . . ,xk,xk+1), . . . ,Rn−k(x1, . . . ,xk,xn).but this may be impra
ti
al due to the size of the ground program.
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Example

Consider a less optimal formulation of the 8-queens problem:
Number(1;2;3;4;5;6;7;8).

1{Cell(q,x,y) | Number(x;y)}1← Number(q).

← Cell(q1,x,y1; q2,x,y2), q1 6= q2, y1 6= y2, Number(q1;q2;x;y1;y2).

➤ Sin
e |Number|= 8, the 
hoi
e rule has 8 instan
es�ea
hinvolving 64 
ells. The 
onstraint has 562×8 = 25088 instan
es!

➤ It is possible to split Cell(q,x,y) into Column(q,x) and Row(q,y).

1{Column(q,x) | Number(x)}1← Number(q).

← Column(q1,x; q2,x), q1 6= q2, Number(q1;q2;x).

☞ The number of 
onstraints drops down to 56×8 = 448.
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Symmetries

➤ Many problems that have been addressed using ASP te
hniquesare subje
t to 
ombinatorial explosion: the number of 
ases to
onsider grows as problem-spe
i�
 parameters grow.

➤ Symmetries de
rease the e�
ien
y of ASP in several ways.1. Individual relations may reserve extra spa
e due to symmetries.2. When 
omputing all/several answer sets, symmetri
 
opies ofsome or all answer sets are en
ountered multiple times.3. Symmetri
 
andidates for answer sets, whi
h turn out not tobe answer sets, are ex
luded repeatedly during the sear
h.

➤ Many sour
es of symmetry 
an be avoided by 
areful design.
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Symmetri
 Relations

➤ Many binary relations are symmetri
 by nature.

➤ It is possible to halve the spa
e reserved by su
h relations byenfor
ing asymmetry in terms of additional 
onstraints.Example. Mat
hes organized in a sports tournament are symmetri
(the fa
t that team x plays team y means that team y plays team x):

Team(1). . . . Team(12).

Match(x,y)← Team(x), Team(y), x 6= y.1. Now |Team|= 12 and |Match|= |Team|2−|Team|= 132.2. This number 
an be halved to 66 by substituting x < y for x 6= y.3. Then the asymmetry of Match must be taken into a

ount.
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Symmetri
 Answer Sets

Example. Let us re
onsider the formulation of the 8-queens problem:

Number(1;2;3;4;5;6;7;8).

1{Column(q,x) | Number(x)}1← Number(q).

← Column(q1,x; q2,x), q1 6= q2, Number(q1;q2;x).

1{Row(q,x) | Number(x)}1← Number(q).

← Row(q1,x; q2,x), q1 6= q2, Number(q1;q2;x).

DC(q1,q2, |x1− x2|)← Column(q1,x1;q2,x2), Number(q1;x1;q2;x2).

DR(q1,q2, |y1− y2|)← Row(q1,y1;q2,y2), Number(q1;y1;q2;y2).

← DC(q1,q2,d), DR(q1,q2,d), Number(q1;q2;d).

☞ Due to identities of the queens, the number of answer sets getsmultiplied by 8! = 40320 and it be
omes as high as 3709440 = 8!×92.
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Redu
ing Symmetries

The fa
tor of 8! 
an be avoided altogether if the identities of queensare not represented and only 
ells are reserved for them.
Number(1;2;3;4;5;6;7;8).

8{Queen(x,y) | Number(x;y)}8.

← Queen(x,y1;x,y2), y1 6= y2, Number(x;y1;y2).

← Queen(x1,y;x2,y), x1 6= x2, Number(x1;x2;y).

← Queen(x1,y1;x2,y2), x1 6= x2, y1 6= y2, |x1− x2|= |y1− y2|,

Number(x1;y1;x2;y2).

➤ The number of answer sets for this program is 92.

➤ Certain symmetries still persist (
onsider rotation and re�e
tion).
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Exploiting Default Negation

➤ Due to minimality, one 
an 
on
entrate on spe
ifying whi
h thingsare true in a model M�others are false by default.

➤ Phrased in terms of an n-ary relation symbol R: we aim to statewhi
h tuples 〈t1, . . . ,tn〉 are in RM�others are out by default.

➤ This line of reasoning works �ne for relatively �small� relations butmay 
reate unne
essarily large relations otherwise.

➤ The question is whi
h one is bigger: RM or its 
omplement?1. The smaller one 
an be used for knowledge representation.2. The 
omplement is available through default negation ∼.

➤ One might ask an analogous question at the level of stable models!
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Example

Consider the following de�nitions of equality and di�eren
e:

Number(1). . . . Number(n).

Equal(x,x)← Number(x).

Differ(x,y)←∼Equal(x,y), Number(x;y).(A new relation symbol is introdu
ed for the 
omplement!)

➤ The size of the domain |Number|= n is parameterized and 
ouldbe spe
i�ed separately, e.g., from the 
ommand line of lparse.

➤ The 
ardinalities |Equal| and |Differ| are n and n2−n, respe
tively,whi
h suggests that the former is preferably represented.
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OBJECTIVES

➤ You are aware/
an name one 
ommer
ial appli
ation area of ASP.
➤ You know the main features of the produ
t 
on�guration domainand are able to express them using 
hoi
e rules and 
onstraints.
➤ You are familiar with a number of design prin
iples that 
an beused to 
ut down the size of the resulting ground program.
➤ You are able to 
al
ulate/estimate the sizes of relations involvedin your own programs and make design de
isions in this respe
t.
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TIME TO PONDERConsider the following program for the tournament s
heduling problem:
team(1..n). week(1..n-1). field(1..n/2).

1 { schedule(W,F,T1,T2):team(T1):team(T2):T1<T2 } 1 :-

week(W), field(F).

:- 2 { schedule(W,F,T1,T2):week(W):field(F) },

team(T1), team(T2), T1<T2.

:- 2 { schedule(W,F1,T,T1):field(F1):team(T1):T<T1,

schedule(W,F2,T2,T):field(F2):team(T2):T2<T },

team(T), week(W).Are there any symmetries on
e the fields-predi
ate is removed?
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