T-79.5102 / Autumn 2007 Further primitives

-

Lecture 4: Further Primitives.

Outline

1. Syntactic extensions
2. Choice rules

3. Cardinality rules

4. Weight rules

5. The snodel s system

T-79.5102 / Autumn 2007 Further primitives

4)

Extended Programs in a NutsheIII

O A literal is either positive (an atom @) or negative (—a).

O A default literal is formed from an ordinary literal using default
negation: a, —a, ~a, and ~—a.

[0 Atoms are partitioned in three categories: true (a and ~—a), false
(—a and ~a), and undefined/unknown (~a and ~—a).

Definition. An extended program P is a set of rules of the form
Le—1l1, .l ~nsa, oo ~lnem.
where | and I1,...,lnim belong to the literal base

Lit(P) =Hb(P)u{—-a|aeHb(P)}.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Further primitives

-

1. SYNTACTIC EXTENSIONSI

O The expressiveness of normal programs can be enhanced by
introducing new syntactic primitives to the language.

O Any proper definition of a syntactic extension must address
1. how the syntax of programs is generalized, and
2. how the extension is covered by the stable model semantics.

O A way to address the second item is to provide a suitable
translation for removing the new syntax viewed as sugar.

Example. Extended programs are obtained from normal ones by the

introduction of classical negation, denoted by “=", in addition to

default negation, denoted by “~

_

© 2007 TKK / TCS

_

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Further primitives

-

Answer Sets I

Definition. A consistent set of literals L C Lit(P) is an answer set of
an extended program P iff L is the least set of literals closed under

L
P :{I<—|1,...,|n|I<—|1,...,ln,N|n+17...,N|n+m€P
and |n+1¢L7...’|n+m¢L }

Example. Consider an extended program P having the following rules:
Flies < Bird, ~—Files. Bird.
—Flies « Penguin. —Flies < Oily.
The respective unique answer sets of P and Q=PU{Qily. } are
{Bird, Flies} and {Bird, Oily, ~Flies}.

_

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Further primitives

4)

Desiderata for Compilation'

O There is trade-off between two basic ways of treating syntactic

extensions when an ASP system is implemented:

1. The support for syntactic extensions is integrated directly to
the search engine in order to boost the search of answer sets.

2. Expressions that involve syntactic extensions are compiled away

in order to simplify the design of the search engine.

0 The feasibility of compilation depends much on the complexity of

the transformation required to remove a particular extension.

O For instance, transformations that are linear time and modular
(applicable rule-by-rule) provide a good basis for compilation.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Further primitives

4 N

Translating Extended Programs'

An extended program is transformed into a normal one as follows:

1. A new atom @ is introduced for each atom a < Hb(P).

2. A constraint f < a,a,~f is introduced for each atom a € Hb(P).
Here f & Hb(P) can be a joint new atom for all such rules.

3. Literals are translated according to Try(a) =a and Try(—a) =a.

4. An extended rule | <1, ...l ~lpi1, ..., ~lnim is translated into
Trn() <= Trn(le), -, Ten(ln), ~Trn(Inga), -, ~Trn(Ingm)-

Theorem. (Correctness of the transformation) A consistent set of
literals L C Lit(P) is an answer set of an extended program P iff
Trn(L) = {Trn(l) | | € L} is an answer set of Try(P).

T-79.5102 / Autumn 2007 Further primitives

4)

2. CHOICE RULES I

00 We concentrate on syntactic extensions to (propositional) normal

programs next and abandon extended programs for a while.

O A choice rule is an expression of the form
{a1,...,an} < b1, ...,bn, ~C1, ..., ~Cr.
where each &, bj, and ¢y is an atom.

O Intuitively, if the rule body is satisfied, we can choose any subset
of the atoms mentioned in the head {ay,...,an} to be true.

O Given a model candidate M C Hb(P), a reduced rule
a« by, ...,by is included in the reduced program PV iff
ac{a,...,an}, ME~cCy,...,~Cy, and M Ea

© 2007 TKK / TCS

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Further primitives

4 N

Representing Choices I

0 As suggested by their name, choice rules lend themselves to

expressing various kinds of choices involved in applications.

0 However, the minimality of stable models is no longer guaranteed
in the presence of choice rules.

Example. Program P = {{a} < ~b. } has two stable models M1 = 0
and My = {a} so that My C M. Note that PM1 =0 and PM2 = {a. }.
Example. In our preceding example, the choice of goodies is nicely

expressed in terms of a choice rule {Cake,Bun, Cookie}.

For now, the exclusive choice between coffee and tea must be
accompanied by constraints (written below without F <+ ~F):

{Coffee, Tea}. <« Coffee, Tea. « ~Coffee, ~Tea.

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Further primitives

-

Translating Choice Rules'

Choice rules can be removed from a program P as follows:

having a head occurrence in some choice rule of P.

2. A choice rule {a,...,an} < b1, ...,by, ~C1, ..., ~Cy can be
translated into 2h+ 1 rules
a < b,~ay. ah < b, ~an.

b(—bl, ...,bn7Ncl, ...,NCm
where b € Hb(P) is a new atom specific to this rule.

Theorem. An interpretation M C Hb(P) is a stable model of a
program P iff MU {a| ac Head(P) \ M} is a stable model of Trn(P).

1. A new atom ais introduced for each atom a € Head(P), i.e., those

J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Further primitives

-

3. CARDINALITY RULESI

O A default literal is either an atom a or its default negation ~a.

O A cardinality rule is an expression of the form

a«—I{by,...,bn, ~C1,...,~Cn}.

where @, each bj, and each ¢ is an atom.

O The idea behind the rule is that if the number of satisfied default
literals in the rule body is at least |, then the head a is true.

O Thus | acts as a lower bound in the rule.
Example. In our delicacy example, having at least one of the goodies
can be formalized succinctly by a cardinality rule

Some « 1{Cake, Bun, Cookie}.

_

J

© 2007 TKK / TCS

10

T-79.5102 / Autumn 2007

Semantics of Cardinality RulesI

O Given a model candidate M C Hb(P), the reduct PM contains
a—|1"{bg,...,bn}

with a revised lower bound I” = max(0,l — |{c1,...,cm} \ M]).

Further primitives

O However, such rules are not encountered in positive programs.

O A positive cardinality rule a<1{bs,...,by} in a program P is
satisfied in an interpretation | C Hb(P) iff

| <|{bi |M = bi}| implies M = a.

O Previous results about least models generalize for this class of
programs, i.e., programs with positive cardinality rules.

Definition. An interpretation M C Hb(P) is a stable model of a

normal program P with cardinality rules iff M = LM (P¥).

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Making Choices of Specific Cardinality'

O It is easy to incorporate upper bounds into cardinality rules: a rule

Further primitives

of the form a«— I {bg, ... ,by, ~Cy, ..., ~Cn}u stands for
b—1{by,...,bn ~cC1,...,~Cn}.
c—u+1{bg,...,by, ~C1,...,~Cn}.
a«< b, ~c.

O The meaning of a choice | {a1,...,an}u«— b, ...,by, ~C1, ..., ~Cn

with lower and upper bounds | and u is given by

b<—b]_,...,bn7 NC]_,...,NCm.
{ai1,...,.an} —b. c—I{as,....an}u.
«— b, ~cC.

Examples. 1{Coffee, Tea} 1. 1{Cake, Bun, Cookie} 2.

J

© 2007 TKK / TCS

11

12

T-79.5102 / Autumn 2007 Further primitives

Translations Back and Forth.

O A normal rule a«< by, .

..7bn7NC1’...
cardinality rule a<— n+m{bg, ...

,~Cm is equivalent to a
abna NC]_, LR 7NCm}-

..,0n} where dy, ..., d, are default
literals and | < n can be rewritten as a set of normal rules:
1. A condition n{dy, .

2. A condition 0{dy, .

O A cardinality rule a«— 1 {d, .

..,On} is replaced by d, ..., dn.
..,0n} is dropped altogether.
3. If di = b, the cardinality rule is replaced by
a<—bl—1{dy,...,dy} and a« ~b 1 {dy, ... ,dn}.
4. If dp = ~c, the cardinality rule is replaced by
a«—~c|l—1{dy,...,dh}; a< ~C,I{dy,...,dn}, and T~ ~c.

|:| An exponential translation results in the worst case.

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Further primitives

4. WEIGHT RULESI

O A weight rule is an expression of the form

a<—|[b]_:W:b...,bn:thNCl:V:h...’NCm:Vm}.

where Wy, ... Wy and Vi, ... Vi are weights (natural numbers)

associated with the respective default literals in the rule body.

O The number | acts as a lower bound for a sum of weights
WSM(bl:Wl, ...,bn:Wn7 ~C1=Vq,...
IMEb Wit 3 Mg Vi

that can be evaluated with respect to any interpretation M.

,~Cm = Vm) =

O Intuitively, the head a must be true if the sum of weights
associated with satisfied default literals is at least I.

4 N

- J

© 2007 TKK / TCS

13

14

T-79.5102 / Autumn 2007 Further primitives

-

Semantics of Weight RuIesI

O Given a model candidate M C Hb(P), the reduct PM contains
a—1"[by=wy,...,by=wy]
with a revised lower bound
I’ =max(0,] —WSy(~C1 =V1,...,~Cm=Vm)).

O A positive weight rule a«— | [by = wy,
interpretation | C Hb(P) iff

| <WSy (b1 =wy,...,.bn =w,) implies M | a.

0 Stable models, i.e., answer sets, generalize for weight programs in
analogy to cardinality programs.

...,bn =Wp] is satisfied in an

J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Further primitives

-

Modelling with Weight Rules'

O Many applications involve numerical measures such as prices,
capacities, etc. that have to be limited in a way or another.

0 Weight rules provide a flexible way to formalize such limits.
O The unit and assignment of weights can vary from rule to rule.

Example. Consider the following program containing a weight rule:
{Tea, Espresso, Cappucino}. {Cake,Bun,Cookie}. {TakeAway}
Broke < 6[Tea = 1, Espresso = 2, Cappucino = 3,

Cake = 3,Bun = 2, Cookie = 1, ~TakeAway = 1].
F — Broke, ~F.

= For instance, interpretations M = {Espresso, Bun} and
N = {Espresso, Cake, TakeAway} are stable.

© 2007 TKK / TCS

15

16

T-79.5102 / Autumn 2007 Further primitives

-

5. THE SMODELS SYSTEMI

O The snodel s system is an implementation of ASP based on
normal rules, cardinality rules, and weight rules.

0 The system consists of two main components: the grounder
| parse (v. 1.0.17) and the search engine snodel s (v. 2.32).

P:>:>Gnd(P):>;sM1, My, ...

O In addition to removing variables, the front-end | par se is
responsible for partial evaluation and simplification tasks.

O In UNIX-like environments, the system is run as a pipeline

| parse programl|p | snodels 1

where 1 is the number of models to be computed (0 means all).

J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Further primitives

-

Internal Representation'

0 The output of Iparse is based on a simplified 12113
language which provides programs with an in- 0
ternal (numeric) representation. 2 a
3b
O Such an intermediate format enables the de- 0 B+
velopment of other ASP systems parallel to 0
the snodel s system. B-
O There are tools to handle programs in this for- 1
mat such as | pli st (symbolic representation) 0
1

and | en (count atoms, rules, and length).

Example. The lines shown above on the right are produced by the
command line “echo "a:-not b.’ | |parse -dall".

_

© 2007 TKK / TCS

17

18

T-79.5102 / Autumn 2007 Further primitives

-

~

Cardinality/Weight Constraint Programs'

The forms of choice, cardinality, and weight rules introduced so far

correspond to those used in the internal representation.

In fact, the grounder of the system admits a more general syntax
|0EOU0 — |1E1U1, ...,|nEnUn.

where each E; is a cardinality/weight expression as above.

The semantics of such rules can be understood from a translation

(Ao} —b. feb~bg~f. fb,co~f.
b(;b]_,...,bn,'\“(:l,...,NCn.
b — liE;. ci<—(ui—|—1)Ei. (forOSiSn)

where Ag is the set of positive default literals in Eg.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Further primitives

-

Guiding the Search of Answer Sets'

Compute statements allow the selection of answer sets to be
computed by the snmodel s system:

compute {by, ...,bn, ~C1, ..., ~Cn}.

It is also possible to optimize answer sets using optimization
statements that resemble weight rules for default literals dy,...,dn:

minimize {d; = wy,...,dn =Wy }.
maximize {d; = wx,...,0h = Wn}.
The goal is to minimize/maximize the respective weight sum.

If several optimization statements are specified, they are
interpreted lexicographically (the first is most significant).

© 2007 TKK / TCS

19

20

T-79.5102 / Autumn 2007 Further primitives

-

Syntactic Extensions in | par seI

The front-end | par se has features that support concise encodings:
1. Range specifications like node(1. . 10) are allowed.

2. Several instances of the same predicate can be merged into one
such as queen(1,6; 2,3; 3,7; 4,4, 51, 6,8, 7,2; 8,5).

3. Literal sets are used to condense choices and rule bodies:
1{in(XY):edge(X Y) } 1 :- node(X).

4. Values of constants can be assigned using option - C.

5. Classical negation is enabled with option flag - -t rue-negati on.

Consult the user's manual for arithmetical operations and more!

_

J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Further primitives

-

SuDoku Puzzles Revisited.

Example. Even the very short program that solved SuDoku puzzles
can be condensed using the special features of | par se:

nunber(1..9).
border(1;4;7).
region(X Y) :- border(XY).

1 { value(X Y, N:nunber (X Y): X1<=X: X<=X1+2; Y1<=Y: Y<=Y1+2 } 1
;- nunmber (N), region(X1,Y1).

c- 2 {value(X Y, N:nunber(N)}, nunber(XY).

c- 2 {value(X Y, N):nunber(Y)}, nunber(N;X).
i- 2 {value(X Y, N:nunber(X)}, nunber(NY).

_

© 2007 TKK / TCS

21

22

T-79.5102 / Autumn 2007 Further primitives

OBJECTIVES I

O You know a number of syntactic extensions to normal programs
and understand their semantics intuitively as well as by definition
and/or via syntactic transformations.

O You are able to check/calculate stable models for simple programs
involving choice rules, cardinality rules, and weight rules.

O You are able to formalize simple constraint programming problems
using the language supported by the front-end | par se.

O You have tried out the snodel s system in practise.

4)

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Further primitives

TIME TO PONDER'

A translation from cardinality rules into normal rules was presented
above (see slide 13).

O Can you think of a more succinct transformation for this purpose?

O What kind arguments are needed to prove your approach correct?

4 N

© 2007 TKK / TCS

23

24

