
AB

T-79.5102 / Autumn 2007 Further primitives 1

Le
ture 4: Further PrimitivesOutline1. Synta
ti
 extensions2. Choi
e rules3. Cardinality rules4. Weight rules5. The smodels system

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Further primitives 2

1. SYNTACTIC EXTENSIONS

➤ The expressiveness of normal programs
an be enhan
ed byintrodu
ing new synta
ti
 primitives to the language.

➤ Any proper de�nition of a synta
ti
 extension must address1. how the syntax of programs is generalized, and2. how the extension is
overed by the stable model semanti
s.
➤ A way to address the se
ond item is to provide a suitabletranslation for removing the new syntax viewed as sugar.Example. Extended programs are obtained from normal ones by theintrodu
tion of
lassi
al negation, denoted by �¬�, in addition todefault negation, denoted by �∼�.

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Further primitives 3

Extended Programs in a Nutshell
➤ A literal is either positive (an atom a) or negative (¬a).
➤ A default literal is formed from an ordinary literal using defaultnegation: a, ¬a, ∼a, and ∼¬a.

➤ Atoms are partitioned in three
ategories: true (a and ∼¬a), false(¬a and ∼a), and unde�ned/unknown (∼a and ∼¬a).

De�nition. An extended program P is a set of rules of the form

l← l1, . . . , ln,∼ln+1, . . . ,∼ln+m.where l and l1, . . . ,ln+m belong to the literal base

Lit(P) = Hb(P)∪{¬a | a ∈Hb(P)}.

© 2007 TKK / TCS

AB
T-79.5102 / Autumn 2007 Further primitives 4

Answer SetsDe�nition. A
onsistent set of literals L⊆ Lit(P) is an answer set ofan extended program P i� L is the least set of literals
losed under

PL = {l← l1, . . . , ln | l← l1, . . . , ln,∼ln+1, . . . ,∼ln+m ∈ Pand ln+1 6∈ L, . . . ,ln+m 6∈ L }.

Example. Consider an extended program P having the following rules:

Flies← Bird,∼¬Files. Bird.

¬Flies← Penguin. ¬Flies←Oily.The respe
tive unique answer sets of P and Q = P∪{Oily. } are

{Bird,Flies} and {Bird,Oily,¬Flies}.

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Further primitives 5

Desiderata for Compilation

➤ There is trade-o� between two basi
 ways of treating synta
ti
extensions when an ASP system is implemented:1. The support for synta
ti
 extensions is integrated dire
tly tothe sear
h engine in order to boost the sear
h of answer sets.2. Expressions that involve synta
ti
 extensions are
ompiled awayin order to simplify the design of the sear
h engine.

➤ The feasibility of
ompilation depends mu
h on the
omplexity ofthe transformation required to remove a parti
ular extension.

➤ For instan
e, transformations that are linear time and modular(appli
able rule-by-rule) provide a good basis for
ompilation.

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Further primitives 6

Translating Extended Programs

An extended program is transformed into a normal one as follows:1. A new atom a is introdu
ed for ea
h atom a ∈ Hb(P).2. A
onstraint f ← a,a,∼ f is introdu
ed for ea
h atom a ∈ Hb(P).Here f 6∈ Hb(P)
an be a joint new atom for all su
h rules.3. Literals are translated a

ording to TrN(a) = a and TrN(¬a) = a.4. An extended rule l← l1, . . . , ln,∼ln+1, . . . ,∼ln+m is translated into
TrN(l)← TrN(l1), . . . ,TrN(ln),∼TrN(ln+1), . . . ,∼TrN(ln+m).

Theorem. (Corre
tness of the transformation) A
onsistent set ofliterals L⊆ Lit(P) is an answer set of an extended program P i�
TrN(L) = {TrN(l) | l ∈ L} is an answer set of TrN(P).
© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Further primitives 7

2. CHOICE RULES

➤ We
on
entrate on synta
ti
 extensions to (propositional) normalprograms next and abandon extended programs for a while.
➤ A
hoi
e rule is an expression of the form

{a1, . . . ,ah}← b1, . . . ,bn,∼c1, . . . ,∼cm.where ea
h ai, b j, and ck is an atom.
➤ Intuitively, if the rule body is satis�ed, we
an
hoose any subsetof the atoms mentioned in the head {a1, . . . ,ah} to be true.

➤ Given a model
andidate M ⊆ Hb(P), a redu
ed rule

a← b1, . . . ,bn is in
luded in the redu
ed program PM i�

a ∈ {a1, . . . ,ah}, M |=∼c1, . . . ,∼cm, and M |= a.

© 2007 TKK / TCS

AB
T-79.5102 / Autumn 2007 Further primitives 8

Representing Choi
es

➤ As suggested by their name,
hoi
e rules lend themselves toexpressing various kinds of
hoi
es involved in appli
ations.

➤ However, the minimality of stable models is no longer guaranteedin the presen
e of
hoi
e rules.Example. Program P = {{a} ←∼b. } has two stable models M1 = /0and M2 = {a} so that M1 ⊆M2. Note that PM1 = /0 and PM2 = {a. }.Example. In our pre
eding example, the
hoi
e of goodies is ni
elyexpressed in terms of a
hoi
e rule {Cake,Bun,Cookie}.For now, the ex
lusive
hoi
e between
o�ee and tea must bea

ompanied by
onstraints (written below without F←∼F):

{Coffee,Tea}. ← Coffee, Tea. ←∼Coffee,∼Tea.
© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Further primitives 9

Translating Choi
e Rules

Choi
e rules
an be removed from a program P as follows:1. A new atom a is introdu
ed for ea
h atom a ∈Head(P), i.e., thosehaving a head o

urren
e in some
hoi
e rule of P.2. A
hoi
e rule {a1, . . . ,ah}← b1, . . . ,bn,∼c1, . . . ,∼cm
an betranslated into 2h+1 rules

a1← b,∼a1. . . . ah← b,∼ah.

a1←∼a1. . . . ah←∼ah.

b← b1, . . . ,bn,∼c1, . . . ,∼cmwhere b ∈ Hb(P) is a new atom spe
i�
 to this rule.Theorem. An interpretation M ⊆ Hb(P) is a stable model of aprogram P i� M∪{a | a ∈ Head(P)\M} is a stable model of TrN(P).
© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Further primitives 10

3. CARDINALITY RULES

➤ A default literal is either an atom a or its default negation ∼a.

➤ A
ardinality rule is an expression of the form

a← l {b1, . . . ,bn,∼c1, . . . ,∼cm}.where a, ea
h b j, and ea
h ck is an atom.

➤ The idea behind the rule is that if the number of satis�ed defaultliterals in the rule body is at least l, then the head a is true.
➤ Thus l a
ts as a lower bound in the rule.Example. In our deli
a
y example, having at least one of the goodies
an be formalized su

in
tly by a
ardinality rule

Some← 1{Cake,Bun,Cookie}.
© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Further primitives 11

Semanti
s of Cardinality Rules
➤ Given a model
andidate M ⊆ Hb(P), the redu
t PM
ontains

a← l′ {b1, . . . ,bn}with a revised lower bound l′ = max(0, l−|{c1, . . . ,cm}\M|).
➤ However, su
h rules are not en
ountered in positive programs.
➤ A positive
ardinality rule a← l {b1, . . . ,bn} in a program P issatis�ed in an interpretation I ⊆ Hb(P) i�

l ≤ |{bi |M |= bi}| implies M |= a.
➤ Previous results about least models generalize for this
lass ofprograms, i.e., programs with positive
ardinality rules.De�nition. An interpretation M ⊆ Hb(P) is a stable model of anormal program P with
ardinality rules i� M = LM(PM).
© 2007 TKK / TCS

AB
T-79.5102 / Autumn 2007 Further primitives 12

Making Choi
es of Spe
i�
 Cardinality

➤ It is easy to in
orporate upper bounds into
ardinality rules: a ruleof the form a← l {b1, . . . ,bn,∼c1, . . . ,∼cm}u stands for

b← l {b1, . . . ,bn,∼c1, . . . ,∼cm}.

c← u+1{b1, . . . ,bn,∼c1, . . . ,∼cm}.

a← b,∼c.

➤ The meaning of a
hoi
e l {a1, . . . ,ah}u← b1, . . . ,bn,∼c1, . . . ,∼cmwith lower and upper bounds l and u is given by

b← b1, . . . ,bn,∼c1, . . . ,∼cm.

{a1, . . . ,ah}← b. c← l {a1, . . . ,ah}u.

← b,∼c.Examples. 1{Coffee,Tea}1. 1{Cake,Bun,Cookie}2.
© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Further primitives 13

Translations Ba
k and Forth

➤ A normal rule a← b1, . . . ,bn,∼c1, . . . ,∼cm is equivalent to a
ardinality rule a← n+m{b1, . . . ,bn,∼c1, . . . ,∼cm}.

➤ A
ardinality rule a← l {d1, . . . ,dn} where d1, . . . ,dn are defaultliterals and l ≤ n
an be rewritten as a set of normal rules:1. A
ondition n{d1, . . . ,dn} is repla
ed by d1, . . . ,dn.2. A
ondition 0{d1, . . . ,dn} is dropped altogether.3. If d1 = b, the
ardinality rule is repla
ed by

a← b, l−1{d2, . . . ,dn} and a←∼b, l {d2, . . . ,dn}.4. If d1 =∼c, the
ardinality rule is repla
ed by

a←∼c, l−1{d2, . . . ,dn}; a←∼c, l {d2, . . . ,dn}, and c←∼c.

☞ An exponential translation results in the worst
ase.

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Further primitives 14

4. WEIGHT RULES

➤ A weight rule is an expression of the form

a← l [b1 = w1, . . . ,bn = wn,∼c1 = v1, . . . ,∼cm = vm].where w1, . . . ,wn and v1, . . . ,vm are weights (natural numbers)asso
iated with the respe
tive default literals in the rule body.
➤ The number l a
ts as a lower bound for a sum of weights

WSM(b1 = w1, . . . ,bn = wn,∼c1 = v1, . . . ,∼cm = vm) =

∑M|=bi
wi +∑M|=∼c j

v jthat
an be evaluated with respe
t to any interpretation M.
➤ Intuitively, the head a must be true if the sum of weightsasso
iated with satis�ed default literals is at least l.

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Further primitives 15

Semanti
s of Weight Rules
➤ Given a model
andidate M ⊆ Hb(P), the redu
t PM
ontains

a← l′ [b1 = w1, . . . ,bn = wn]with a revised lower bound

l′ = max(0, l−WSM(∼c1 = v1, . . . ,∼cm = vm)).
➤ A positive weight rule a← l [b1 = w1, . . . ,bn = wn] is satis�ed in aninterpretation I ⊆ Hb(P) i�

l ≤WSM(b1 = w1, . . . ,bn = wn) implies M |= a.

➤ Stable models, i.e., answer sets, generalize for weight programs inanalogy to
ardinality programs.

© 2007 TKK / TCS

AB
T-79.5102 / Autumn 2007 Further primitives 16

Modelling with Weight Rules

➤ Many appli
ations involve numeri
al measures su
h as pri
es,
apa
ities, et
. that have to be limited in a way or another.

➤ Weight rules provide a �exible way to formalize su
h limits.

➤ The unit and assignment of weights
an vary from rule to rule.Example. Consider the following program
ontaining a weight rule:

{Tea,Espresso,Cappucino}. {Cake,Bun,Cookie}. {TakeAway}

Broke← 6 [Tea = 1,Espresso = 2,Cappucino = 3,

Cake = 3,Bun = 2,Cookie = 1,∼TakeAway = 1].

F← Broke,∼F.

=⇒ For instan
e, interpretations M = {Espresso,Bun} and

N = {Espresso,Cake,TakeAway} are stable.
© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Further primitives 17

5. THE SMODELS SYSTEM

➤ The smodels system is an implementation of ASP based onnormal rules,
ardinality rules, and weight rules.

➤ The system
onsists of two main
omponents: the grounder

lparse (v. 1.0.17) and the sear
h engine smodels (v. 2.32).

P ⇒ lparse ⇒ Gnd(P) ⇒ smodels ⇒ M1, M2, . . .

➤ In addition to removing variables, the front-end lparse isresponsible for partial evaluation and simpli�
ation tasks.

➤ In UNIX-like environments, the system is run as a pipeline

lparse program.lp | smodels 1where 1 is the number of models to be
omputed (0 means all).

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Further primitives 18

Internal Representation

➤ The output of lparse is based on a simpli�edlanguage whi
h provides programs with an in-ternal (numeri
) representation.

➤ Su
h an intermediate format enables the de-velopment of other ASP systems parallel tothe smodels system.

➤ There are tools to handle programs in this for-mat su
h as lplist (symboli
 representation)and len (
ount atoms, rules, and length).

1 2 1 1 3

0

2 a

3 b

0 B+

0

B-

1

0

1

Example. The lines shown above on the right are produ
ed by the
ommand line �echo ’a:-not b.’ | lparse -dall�.

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Further primitives 19

Cardinality/Weight Constraint Programs
➤ The forms of
hoi
e,
ardinality, and weight rules introdu
ed so far
orrespond to those used in the internal representation.
➤ In fa
t, the grounder of the system admits a more general syntax

l0 E0 u0← l1 E1 u1, . . . , ln En un.where ea
h Ei is a
ardinality/weight expression as above.
➤ The semanti
s of su
h rules
an be understood from a translation

{A0}← b. f ← b,∼b0,∼ f . f ← b,c0,∼ f .

b← b1, . . . ,bn,∼c1, . . . ,∼cn.

bi← liEi. ci← (ui +1)Ei. (for 0≤ i≤ n)where A0 is the set of positive default literals in E0.

© 2007 TKK / TCS

AB
T-79.5102 / Autumn 2007 Further primitives 20

Guiding the Sear
h of Answer Sets

➤ Compute statements allow the sele
tion of answer sets to be
omputed by the smodels system:

compute {b1, . . . ,bn,∼c1, . . . ,∼cm}.

➤ It is also possible to optimize answer sets using optimizationstatements that resemble weight rules for default literals d1, . . . ,dn:

minimize {d1 = w1, . . . ,dn = wn}.

maximize {d1 = w1, . . . ,dn = wn}.

➤ The goal is to minimize/maximize the respe
tive weight sum.

➤ If several optimization statements are spe
i�ed, they areinterpreted lexi
ographi
ally (the �rst is most signi�
ant).

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Further primitives 21

Synta
ti
 Extensions in lparse

The front-end lparse has features that support
on
ise en
odings:1. Range spe
i�
ations like node(1..10) are allowed.2. Several instan
es of the same predi
ate
an be merged into onesu
h as queen(1,6; 2,3; 3,7; 4,4; 5,1; 6,8; 7,2; 8,5).3. Literal sets are used to
ondense
hoi
es and rule bodies:

1 { in(X,Y):edge(X,Y) } 1 :- node(X).4. Values of
onstants
an be assigned using option -c.5. Classi
al negation is enabled with option �ag --true-negation.Consult the user's manual for arithmeti
al operations and more!

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Further primitives 22

SuDoku Puzzles RevisitedExample. Even the very short program that solved SuDoku puzzles
an be
ondensed using the spe
ial features of lparse:

number(1..9).

border(1;4;7).

region(X,Y) :- border(X;Y).

1 { value(X,Y,N):number(X;Y):X1<=X:X<=X1+2:Y1<=Y:Y<=Y1+2 } 1

:- number(N), region(X1,Y1).

:- 2 {value(X,Y,N):number(N)}, number(X;Y).

:- 2 {value(X,Y,N):number(Y)}, number(N;X).

:- 2 {value(X,Y,N):number(X)}, number(N;Y).

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Further primitives 23

OBJECTIVES

➤ You know a number of synta
ti
 extensions to normal programsand understand their semanti
s intuitively as well as by de�nitionand/or via synta
ti
 transformations.
➤ You are able to
he
k/
al
ulate stable models for simple programsinvolving
hoi
e rules,
ardinality rules, and weight rules.

➤ You are able to formalize simple
onstraint programming problemsusing the language supported by the front-end lparse.

➤ You have tried out the smodels system in pra
tise.

© 2007 TKK / TCS

AB
T-79.5102 / Autumn 2007 Further primitives 24

TIME TO PONDERA translation from
ardinality rules into normal rules was presentedabove (see slide 13).

➤ Can you think of a more su

in
t transformation for this purpose?

➤ What kind arguments are needed to prove your approa
h
orre
t?

© 2007 TKK / TCS

