
AB

T-79.5102 / Autumn 2007 Positive programs 1

Le
ture 2: Positive Programs

Outline1. Ba
kground for rules2. Rules and programs3. Minimal models4. Constru
ting the least model5. Programs with variables6. Expressive power
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1. BACKGROUND FOR RULES

➤ Answer set programming adopts a rule-based syntax previouslyused in PROLOG, dedu
tive databases, and expert systems.

➤ Horn 
lauses provide rule-based reasoning with a solid foundation:1. Rules 
an be interpreted as Horn 
lauses.2. Classi
al models determine the set of logi
al 
onsequen
es
Cn(R) asso
iated with ea
h set of rules R.

➤ Horn 
lauses lend themselves for e�
ient implementation whi
hmakes them important from the 
omputational point of view.
➤ Typi
ally, appli
ations require a more expressive language but fornow we 
on
entrate on rules 
orresponding to Horn 
lauses.
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Literals and ClausesDe�nitions.1. A literal is either an atom a (a positive literal) or the negation ofan atom ¬a (a negative literal).2. A 
lause is a disjun
tion l1∨ . . .∨ln of literals l1, . . . ,ln.3. A Horn 
lause is a 
lause with at most one positive literal.4. A program 
lause, or a rule for short, is a disjun
tion of literals

a∨¬b1∨ . . .∨¬bn with exa
tly one positive literal.

Example. The 
lauses ¬p∨¬q∨¬r and ¬p∨q∨¬r are Horn 
lausesbut p∨¬q∨ r is not. Only the se
ond one is a program 
lause.
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2. RULES AND PROGRAMSCertain notational 
onventions are adopted for Horn 
lauses:

• A rule a∨¬b1∨ . . .∨¬bn is written a← b1, . . . ,bn where a and

b1, . . . ,bn form the head and the body of the rule, respe
tively.

• A 
onstraint ¬b1∨ . . .∨¬bn is written ← b1, . . . ,bn and it 
an beviewed as a rule with an empty head.

• A fa
t a (n = 0) is a rule written without �←�.

• Full stops �.� are also used to separate rules in sets of rules.De�nition. A positive program P is a set of rules as de�ned above.Remark. Here the word �positive� refers to the fa
t that rule bodiesare negation-free. Forms of negation will be introdu
ed later.
© 2007 TKK / TCS
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Satisfa
tion and EntailmentDe�nitions. Assume rules and 
onstraints based on a set of atoms P .1. A rule a← b1, . . . ,bn is satis�ed in an interpretation I ⊆ P ,denoted I |= a← b1, . . . ,bn, i� {b1, . . . ,bn} ⊆ I implies a ∈ I.2. A 
onstraint ← b1, . . . ,bn is satis�ed in an interpretation I ⊆ P ,denoted I |=← b1, . . . ,bn, i� {b1, . . . ,bn} 6⊆ I.3. An interpretation I ⊆ P is a model of a set of rules and 
onstraints

P∪C, denoted M |= P∪C, i� M |= r for ea
h r ∈ P∪C.4. An atom a is a logi
al 
onsequen
e of P∪C i� a ∈M for everyinterpretation M ⊆ P su
h that M |= P∪C.Proposition. Every positive program P is satis�able (has a model).Proof. The interpretation M = Hb(P) is trivially a model of P. 2
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Translating Constraints into Rules

➤ Any set Horn 
lauses S, e�e
tively a union P∪C of a positiveprogram P and a set of 
onstraints C, is not satis�able in general.
➤ E.g., {p, ¬p} 
orresponding to {p}∪{← p} has no models.
➤ Any set of 
onstraints C 
an be translated into a positive program

TrRULE(C) = {⊥← b1, . . . ,bn | ← b1, . . . ,bn ∈C}where ⊥ is a new atom not appearing in Hb(P) nor Hb(C).Proposition. A set of Horn 
lauses S, viewed as a union P∪C in theway explained above, is satis�able ⇐⇒ P∪TrRULE(C) 6|=⊥.Example. The unsatis�ability of {p, ¬p} 
an be determined using thetranslation given above: {p}∪TrRULE({← p}) = {p. ⊥← p. } |=⊥.
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3. MINIMAL MODELSDe�nition.1. An interpretation M ⊆ P , represented as the set of atoms true in
M, is smaller than another interpretation N ⊆ P i� M ⊂ N.2. An interpretation M ⊆ Hb(P) is a minimal model of a (positive)program P i� M |= P and there is no smaller model N |= P.Example. Consider the following positive program:

P = {q← r. r← p,q. }.� The interpretation M = {q,r} is a model of P.� However, M is not minimal be
ause N = /0 is also a model of P.� But, in 
ontrast, N is a minimal model of P.
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Properties of Minimal Models (I)

Theorem. If Mi ⊆ Hb(P) (where i ∈ I) is a 
olle
tion of models for apositive program P, then M =
T

{Mi | i ∈ I} is also a model of P.Proof. Suppose that M 6|= P.

=⇒ ∃ a← b1, . . . ,bn ∈ P su
h that {b1, . . . ,bn} ⊆M but a 6∈M

=⇒ {b1, . . . ,bn} ⊆Mi for all i ∈ I

=⇒ a ∈Mi for all i ∈ I be
ause Mi |= P,

a← b1, . . . ,bn ∈ P and Mi |= a← b1, . . . ,bn

=⇒ a ∈M =
T

{Mi | i ∈ I}, a 
ontradi
tion.Thus M |= P is ne
essarily the 
ase. 2
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Properties of Minimal Models (II)

Theorem. A positive program P has at least one minimal model.Proof. We will 
over the 
ase when |Hb(P)|= n is �nite(a generalization for the in�nite 
ase requires trans�nite indu
tion).Sin
e P is a positive program, we know that M0 = Hb(P) |= P. Thende�ne a de
reasing sequen
e M0 ⊇ . . .⊇Mi ⊇ . . . of models for P:� If Mi is a minimal model of P, let Mi+1 = Mi.� If Mi is not a minimal model of P, it has a model N ⊂Mi.Let Mi+1 = N.Assuming that Mi |= P is never minimal implies that the sequen
e isproperly de
reasing for all i≥ 0. A 
ontradi
tion when i > n. 2
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Example

The idea of the pre
eding proof 
an be demonstrated using

Pn = {p0← p0. p1← p1. p2← p2. . . . pn← pn. }whi
h is a positive program with a �nite number, i.e., n+1, of rules.
➤ The interpretation M0 = Hb(Pn) = {p0, . . . , pn} is a model of P butnot minimal be
ause M1 = {p1, . . . , pn} |= P.

➤ A generalization for i > 0: the interpretation Mi = {pi, . . . , pn} is amodel of Pn but not minimal be
ause Mi+1 = {pi+1, . . . , pn} |= Pn.
➤ When i equals to |Hb(Pn)|= n+1, we have a minimal model

M =
Tn+1

i=0 Mi = /0.
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Properties of Minimal Models (III)

Theorem. Every positive program P has a unique minimal model, theleast model LM(P) of P, whi
h is the interse
tion of its all models.Proof. Sin
e P has at least one minimal model (shown above), let usassume that P had two minimal models, say M1 and M2.
=⇒ M1∩M2 |= P

=⇒ M1∩M2 = M1 and M1∩M2 = M2 (M1 and M2 are minimal)

=⇒ M1 = M2.Thus LM(P)⊆M holds for every M |= P be
ause LM(P) is unique.Sin
e LM(P) |= P, we obtain T

{M ⊆ Hb(P) |M |= P}= LM(P). 2
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Answer SetsCorollary. For any positive program P,

LM(P) = {a ∈ Hb(P) | P |= a}.

➤ By this 
orollary, the least model of a positive program P providesmeans to answer queries about atoms in Hb(P).

➤ Thus LM(P) is the unique answer set asso
iated with P.Example. For P = {a← b, c. b← a, c. c← a, b. },1. LM(P∪{a. }) = {a} and2. LM(P∪{a. b. }) = {a,b,c}.Thus P∪{a. } 6|= c but P∪{a. b. } |= c.

© 2007 TKK / TCS
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4. CONSTRUCTING THE LEAST MODELDe�nition. Let P be a positive logi
 program. Then de�ne anoperator TP : 2Hb(P)→ 2Hb(P) on interpretations I ⊆ Hb(P) as follows:

TP(I) = {a ∈ Hb(P) | a← b1, . . . ,bn ∈ P and {b1, . . . ,bn} ⊆ I}.An interpretation I is a �xpoint of the operator TP i� TP(I) = I.A �xpoint I is the least �xpoint of TP i� I ⊆ I′ for every I′ = TP(I′).Example. Let us analyze P = {a← a. b. c← b. d← a, b. }.1. Now TP({a}) = {a,b} and TP({a,b}) = {a,b,c,d},2. the interpretation M1 = {a,b,c,d} is a �xpoint of TP sin
e

TP(M1) = {a,b,c,d}= M1, and3. the interpretation M2 = {b,c} is the least �xpoint of TP.
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Properties of TPProposition. An interpretation M ⊆ Hb(P) is a model of a positiveprogram P i� TP(M)⊆M.Proof. For any interpretation M ⊆ Hb(P), M 6|= P

⇐⇒ ∃ a← b1, . . . ,bn ∈ P su
h that {b1, . . . ,bn} ⊆M but a 6∈M

⇐⇒ ∃a ∈ TP(M) su
h that a 6∈M ⇐⇒ TP(M) 6⊆M. 2

Proposition. (Monotoni
ity) For a positive program P,
M ⊆ N ⊆ Hb(P) implies TP(M)⊆ TP(N).Proof. For any atom a ∈ Hb(P), we have that a ∈ TP(M)

=⇒ ∃ a← b1, . . . ,bn ∈ P su
h that {b1, . . . ,bn} ⊆M

=⇒ ∃ a← b1, . . . ,bn ∈ P su
h that {b1, . . . ,bn} ⊆ N (M ⊆ N)
=⇒ a ∈ TP(N). 2
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Properties of the Least Fixpoint (I)

Proposition. For a positive program P, the operator TP has the least�xpoint lfp(TP) =
T

{M ⊆ Hb(P) |M = TP(M)}.Proof. Every monotoni
 operator has a least �xpoint (Knaster-Tarski)whi
h is unique. For TP, we denote this �xpoint by lfp(TP).For the interse
tion property, it is su�
ient to note that by de�nition

lfp(TP)⊆M for any M = TP(M), and M = lfp(TP) in parti
ular. 2

The unique �xpoint lfp(TP) 
an be 
onstru
ted iteratively:De�nition. For a positive program P, de�ne a sequen
e ofinterpretations by setting TP ↑ 0 = /0, TP ↑ i+1 = TP(TP ↑ i) for i > 0,and the limit TP ↑ ∞ =
S∞

i=0 TP ↑ i of the sequen
e.
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Properties of the Least Fixpoint (II)

Theorem. For a positive program P, lfp(TP) = TP ↑ ∞ = LM(P).Proof. We will prove the 
laim lfp(TP) = TP ↑ ∞ when P is �nite; thein�nite 
ase uses trans�nite indu
tion and the 
ompa
tness of TP.(⊆) The monotoni
ity of TP guarantees that the sequen
e ofinterpretations TP ↑ i is in
reasing. Hen
e TP(TP ↑ i) = TP ↑ i forsome i≥ 0. Thus lfp(TP)⊆ TP ↑ i⊆ TP ↑ ∞.(⊇) It follows by indu
tion on i that TP ↑ i⊆ lfp(TP) for every i≥ 0.For lfp(TP) = LM(P), we note the following:(⊆) It follows by indu
tion that TP ↑ i⊆ LM(P) for every i≥ 0.(⊇) Any �xpoint M = TP(M) is also a model of P. Thus theinterse
tion of models, i.e. LM(P), is 
ontained in M. 2
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Example

Re
onsider the program P = {a← a. b. c← b. d← a, b. }:

TP ↑ 0 = /0,

TP ↑ 1 = TP(TP ↑ 0) = TP( /0) = {b},

TP ↑ 2 = TP(TP ↑ 1) = TP({b}) = {b,c},

TP ↑ 3 = TP(TP ↑ 2) = TP({b,c}) = {b,c}, . . .

TP ↑ i+1 = TP(TP ↑ i) = TP({b,c}) = {b,c}, . . .

=⇒ TP ↑ ∞ =
S∞

i=0 TP ↑ i = {b,c}= lfp(P) = LM(P).

Remarks. If P is a �nite positive program (as above), then lfp(TP) isalways rea
hed with a �nite number of steps. For ea
h a ∈ lfp(P),there is a �nite i≥ 0 su
h that a ∈ TP ↑ i, even if P is in�nite !
© 2007 TKK / TCS
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5. PROGRAMS WITH VARIABLES

➤ Disregarding any non-logi
al features, logi
 programs anddedu
tive databases 
an be viewed as sets of rules of the form

P(~t)← P1(~t1), . . . ,Pn(~tn)where P(~t) and Pi(~ti)'s are atomi
 formulas involving lists of terms
~t, ~t1, . . ., ~tn as their arguments.

➤ Variables appearing in rules are universally quanti�ed.
➤ Ea
h set of rules P, also 
alled a positive program in the sequel,has a Herbrand base Hb(P) asso
iated with it.
➤ A rule P(~t)← P1(~t1), . . . ,Pn(~tn) with variables x1, . . . ,xm stands forits all ground instan
es, ea
h of whi
h is obtained by substitutingthe variables x1, . . . ,xm by some ground terms s1, . . . ,sm.
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Answer Sets

➤ The semanti
s of a positive program P involving variables isdetermined by the respe
tive ground program Gnd(P).
➤ It is possible to view Gnd(P) as a propositional program and itbe
omes in�nite if P has fun
tion symbols and variables.De�nition. Let P be a positive program�potentially involvingvariables. The unique answer set of P is LM(Gnd(P)).This set gives also the 
orre
tness 
riterion for query evaluation:Proposition. Suppose that Q(~t) is a query involving variables

x1, . . . ,xn for a positive program P. Then P |= ∃x1 · · ·∃xnQ(~t) ⇐⇒there is a ground substitution θ, whi
h repla
es ea
h variable xiwith a ground term ti ∈ Hu(P), su
h that Q(~t)θ ∈ LM(Gnd(P)).
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Example

Consider a positive program P with the following rules

R(a,c). R(b,c). Q(x)← R(x,y).1. The ground program over Hu(P) = {a,b,c} 
ontains the rules

R(a,c). Q(a)← R(a,a). Q(a)← R(a,b). Q(a)← R(a,c).

R(b,c). Q(b)← R(b,a). Q(b)← R(b,b). Q(b)← R(b,c).

Q(c)← R(c,a). Q(c)← R(c,b). Q(c)← R(c,c).2. The answer set is LM(Gnd(P)) = {R(a,c),R(b,c),Q(a),Q(b)}.3. As earlier, this interpretation 
aptures intended answers to queries:

P |= R(a,c) ? yes P |= R(a,d) ? no

P |= Q(a) ? yes P |= Q(c) ? no
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6. EXPRESSIVE POWERRules are expressive enough to 
over basi
 operations on relations aspresent in relational algebra (SQL):1. Union: EUNational(x)← Finn(x).

EUNational(x)← Swede(x).2. Interse
tion: Father(x)← Parent(x), Man(x).3. Proje
tion: Parent(x)← Parent(x,y).4. Sele
tion: Millionaire(x)← Assets(x,y), Greater(y,999999).5. Composition: Result(x,y)← Student(x, i), Grade(i,y).
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Contrast with Relational Algebra

Unlike SQL (stands for Stru
tured Query Language), positiveprograms enable re
ursive de�nitions.Example. E.g., the transitive 
losure of a relation is expressible:

Connection(x,y)← Flight(x,y).

Connection(x,y)← Flight(x,z), Connection(z,y).On the other hand, the 
onditions used in the form of rules 
onsideredso far 
annot refer to 
omplements of relations as in SQL.Example. However, it is not trivial to add negation (∼ below):
Man(a). Man(b). Man(c).

Shaves(c,x)←Man(x),∼Shaves(x,x). Shaves(a,a).
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OBJECTIVES

➤ You are able to de�ne minimal models and the least model forpositive programs and to prove simple properties about them.
➤ You know the inter
onne
tion between the least model of apositive program and its logi
al 
onsequen
es.
➤ You are able to 
onstru
t the least model for the given positiveprogram P by 
al
ulating the least �xpoint of TP.
➤ You have some preliminary ideas how minimal models areexploited in knowledge representation.
➤ You are aware of the basi
 similarities and di�eren
es of relationalalgebra and rule-based languages.
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TIME TO PONDERConsider two positive programs P1 and P2 and their union P1∪P2.

Whi
h of the following do hold in general?1. LM(P1∪P2)⊆ LM(P1)∪LM(P2).2. LM(P1)∪LM(P2)⊆ LM(P1∪P2).
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