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Literals and CIausesI

Definitions.

1. A literal is either an atom a (a positive literal) or the negation of
an atom —a (a negative literal).

2. A clause is a disjunction 11V ... VI, of literals I1,... In.
3. A Horn clause is a clause with at most one positive literal.

4. A program clause, or a rule for short, is a disjunction of literals
aVv-biVv...V-by with exactly one positive literal.

Example. The clauses =pV —=qV —r and =pVv qV —r are Horn clauses
but pV—qVr is not. Only the second one is a program clause.
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1. BACKGROUND FOR RULESI

Answer set programming adopts a rule-based syntax previously
used in PROLOG, deductive databases, and expert systems.

Horn clauses provide rule-based reasoning with a solid foundation:

1. Rules can be interpreted as Horn clauses.
2. Classical models determine the set of logical consequences

Cn(R) associated with each set of rules R

Horn clauses lend themselves for efficient implementation which
makes them important from the computational point of view.

Typically, applications require a more expressive language but for

now we concentrate on rules corresponding to Horn clauses.
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2. RULES AND PROGRAMSI

Certain notational conventions are adopted for Horn clauses:

o A rule av—byV...v-by is written a« by, ... by where a and
b1,...,by form the head and the body of the rule, respectively.

e A constraint =byV...V-by is written < bq,...,by and it can be
viewed as a rule with an empty head.

e A facta (n=0) is a rule written without “«".

‘

e Full stops “." are also used to separate rules in sets of rules.

Definition. A positive program P is a set of rules as defined above.

Remark. Here the word “positive” refers to the fact that rule bodies
are negation-free. Forms of negation will be introduced later.
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Satisfaction and Entailment.

Definitions. Assume rules and constraints based on a set of atoms P.

1. Arule a< by,... by is satisfied in an interpretation | C P,
denoted | Ea <« by,... by, iff {by,...,bp} C I implies a€el.

2. A constraint < by,... b, is satisfied in an interpretation | C P,
denoted | |E— by, ... by, iff {b1,...,bn} £ 1.

3. An interpretation | C P is a model of a set of rules and constraints
PUC, denoted M |=PUC, iff M = for each r € PUC.

4. An atom ais a logical consequence of PUC iff a€ M for every
interpretation M C 2 such that M = PUC.

Proposition. Every positive program P is satisfiable (has a model).

Proof. The interpretation M = Hb(P) is trivially a model of P. a
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Translating Constraints into RuIesI

O Any set Horn clauses S effectively a union PUC of a positive

program P and a set of constraints C, is not satisfiable in general.
O E.g., {p, —p} corresponding to {p} U{« p} has no models.
O Any set of constraints C can be translated into a positive program
TrruLe(C) = {L <« by,....by | < by,...,b, €C}
where L is a new atom not appearing in Hb(P) nor Hb(C).

Proposition. A set of Horn clauses S viewed as a union PUC in the
way explained above, is satisfiable <= PUTrryLe(C) £ L.

Example. The unsatisfiability of {p, —p} can be determined using the
translation given above: {p}UTrrute({<— p})={p. L<—p. } =L
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© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Positive programs

-

3. MINIMAL MODELSI

Definition.

1. An interpretation M C P, represented as the set of atoms true in
M, is smaller than another interpretation N C 2 iff M C N.

2. An interpretation M C Hb(P) is a minimal model of a (positive)
program P iff M |= P and there is no smaller model N = P.

Example. Consider the following positive program:
P={q«r r—pq }
— The interpretation M = {q,r} is a model of P.
— However, M is not minimal because N =0 is also a model of P.

— But, in contrast, N is a minimal model of P.

\_
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Properties of Minimal Models (I)I

Theorem. If Mj C Hb(P) (where i € 1) is a collection of models for a
positive program P, then M = N{M; |i €|} is also a model of P.

Proof. Suppose that M = P.
= Ja< by,...,bp€Psuch that {by,...,.bp} CM butagM
= {by,...,bh} C M foralliel
= a€Mforallie€l because Mj =P,
a<—by,....bonePand Mj =a<~ by,... by
= aeM={M;|iel}, a contradiction.

Thus M |= P is necessarily the case.

\_
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Properties of Minimal Models (II)I

Theorem. A positive program P has at least one minimal model.

Positive programs

Proof. We will cover the case when |Hb(P)| =nis finite
(a generalization for the infinite case requires transfinite induction).

Since P is a positive program, we know that Mg = Hb(P) |= P. Then
define a decreasing sequence Mg O ... D M; D ... of models for P:

— If Mj is a minimal model of P, let M. 1 = M.

— If Mj is not a minimal model of P, it has a model N C M;.
Let Mi+1 =N.

Assuming that M; = P is never minimal implies that the sequence is
properly decreasing for all i > 0. A contradiction when i > n. m]

- J
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The idea of the preceding proof can be demonstrated using

Positive programs

Ph={po<—pPo. Pr—P1. P2—P2. ... Ph—Pn. }
which is a positive program with a finite number, i.e., n+1, of rules.

O The interpretation Mg =Hb(P,) = {po,.--,Pn} is a model of P but
not minimal because M1 = {p1,...,pn} EP.

O A generalization for i > 0: the interpretation M; = {pj,...,pn} is a
model of P, but not minimal because Mj+1 = {pi+1,---,Pn} = Pn.

0O When i equals to |Hb(P,)| = n+1, we have a minimal model
M =Nt M; = 0.

- J
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Properties of Minimal Models (III)I

Theorem. Every positive program P has a unique minimal model, the
least model LM(P) of P, which is the intersection of its all models.

Positive programs

Proof. Since P has at least one minimal model (shown above), let us
assume that P had two minimal models, say M1 and Mo.

= MiNM2EP

=  MiNMz=Mj; and M;NMz =M, (M1 and My are minimal)
= M1=Moy.

Thus LM(P) C M holds for every M = P because LM(P) is unique.
Since LM(P) |= P, we obtain N{M C Hb(P) | M |= P} = LM(P). O

- J
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Answer Sets I

Corollary. For any positive program P,

Positive programs

LM(P) = {ac Hb(P) | P = a}.

0 By this corollary, the least model of a positive program P provides
means to answer queries about atoms in Hb(P).

O Thus LM(P) is the unique answer set associated with P.
Example. For P={a+<b,c. b—ac. c+—ab },

1. LM(PU{a. })={a} and

2. LM(Pu{a. b. })={ab,c}.
Thus Pu{a. }cbutPuf{a b }kc

- J
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4. CONSTRUCTING THE LEAST MODELI

Definition. Let P be a positive logic program. Then define an
operator Tp : 2H0(P) —, 2HB(P) o interpretations | € Hb(P) as follows:

Tp(l) ={aeHb(P) |a« by,...,b€P and {by,...,by} CI}.
An interpretation | is a fixpoint of the operator Tp iff Tp(l) =1.
A fixpoint | is the least fixpoint of Tp iff | C I’ for every I’ =Tp(l’).
Example. Let us analyze P={a<—a. b. c—b d<—ab }.
1. Now Tp({a}) ={a,b} and Tp({a,b}) = {a,b,c,d},

2. the interpretation My = {a,b,c,d} is a fixpoint of Tp since
Tp(Ml) = {a, b, C,d} =My, and

3. the interpretation My = {b,c} is the least fixpoint of Tp.

~
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Properties of Tp'

Proposition. An interpretation M C Hb(P) is a model of a positive
program P iff Tp(M) C M.

Proof. For any interpretation M C Hb(P), M (- P
<= Fa<by,...,by € P such that {by,...,bh} CM but a¢ M

Proposition. (Monotonicity) For a positive program P,
M C N C Hb(P) implies Tp(M) C Tp(N).

Proof. For any atom a € Hb(P), we have that a€ Tp(M)
= Ja«< by,...,b, € Psuch that {by,...,b,} CM

= Ja«by,...,bh € Psuch that {by,....,bh} CN (M CN)
= ac Tp(N).

<= JaeTp(M) such thatag M < Tp(M) Z M. O

© 2007 TKK / TCS

13

14

T-79.5102 / Autumn 2007 Positive programs

-

Properties of the Least Fixpoint (I)I

Proposition. For a positive program P, the operator Tp has the least
fixpoint Ifp(Tp) = N{M C Hb(P) |M = Tp(M)}.

Proof. Every monotonic operator has a least fixpoint (Knaster-Tarski)
which is unique. For Tp, we denote this fixpoint by Ifp(Tp).

For the intersection property, it is sufficient to note that by definition
Ifp(Tp) €M for any M = Tp(M), and M = Ifp(Tp) in particular. O

The unique fixpoint Ifp(Tp) can be constructed iteratively:
Definition. For a positive program P, define a sequence of
interpretations by setting Tp 70=0, Tp 1i4+1=Tp(Tp T1i) fori >0,
and the /imit Tp 1 oo = J> o Tp 11 of the sequence.

\_
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Properties of the Least Fixpoint (II)I

Theorem. For a positive program P, Ifp(Tp) = Tp T 0o = LM(P).

Proof. We will prove the claim Ifp(Tp) = Tp | ® when P is finite; the
infinite case uses transfinite induction and the compactness of Tp.

(€) The monotonicity of Tp guarantees that the sequence of
interpretations Tp T is increasing. Hence Tp(Tp Ti)=Tp Ti for
some i > 0. Thus Ifp(Tp) CTp TiC Tp T co.

(2) It follows by induction on i that Tp 11 C Ifp(Tp) for every i > 0.

For Ifp(Tp) = LM(P), we note the following:

(©) It follows by induction that Tp 1 C LM(P) for every i > 0.
(2) Any fixpoint M =Tp(M) is also a model of P. Thus the

\_

intersection of models, i.e. LM(P), is contained in M. O

~
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Reconsider the program P={a«<—a. b. c—bh. d«—ab }:

Tp10=0,

Tp11=Tp(Tp 10) =Tp(0) = {b},
Tp12=Tp(Tp T 1) =Tp({b}) = {b,c},
Tp13=Tp(Tr12) = Tr({b,c}) = {bc} ...

Tp1i+1=Te(Tp 1i)=Te({b,c})={b,c} ...
= Tplw=UioTe Ti={b,c} =Ifp(P)=LM(P).

Remarks. If P is a finite positive program (as above), then Ifp(Tp) is
always reached with a finite number of steps. For each a € Ifp(P),
there is a finite i > 0 such that a€ Tp 11, even if P is infinite |
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5. PROGRAMS WITH VARIABLESI

O Disregarding any non-logical features, logic programs and
deductive databases can be viewed as sets of rules of the form

P(t) — Py(f1),....Pa(fn)
where P(T) and R (f)’s are atomic formulas involving lists of terms
f, 1, ..., fh as their arguments.

00 Variables appearing in rules are universally quantified.

0 Each set of rules P, also called a positive program in the sequel,
has a Herbrand base Hb(P) associated with it.

0O A rule P(Y) « Py(f1),...,Pn(fh) with variables Xq,... Xn stands for
its all ground instances, each of which is obtained by substituting
the variables X1, ...,Xm by some ground terms s,...,5n.

J
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Answer Sets I

O The semantics of a positive program P involving variables is

determined by the respective ground program Gnd(P).

O It is possible to view Gnd(P) as a propositional program and it
becomes infinite if P has function symbols and variables.

Definition. Let P be a positive program—potentially involving
variables. The unique answer set of P is LM(Gnd(P)).

This set gives also the correctness criterion for query evaluation:

Proposition. Suppose that Q(f) is a query involving variables
X1,...,%n for a positive program P. Then P |= 3x; - -- 3x,Q(f)

there is a ground substitution 0, which replaces each variable X
with a ground term t € HU(P), such that Q(f)6 € LM(Gnd(P)).

- J
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Consider a positive program P with the following rules

QX) — R(xY).

1. The ground program over HU(P) = {a,b,c} contains the rules

R(a,c). R(b,c).

R(a,c). Q(a) — R(a,a). Q(a) — R(a,b). Q(a) — R(a,c).
R(b,c). Q(b) —R(b,a). Q(b) — R(b,b). Q(b)— R(b,c).
Q(c) —R(c,a). Q(c) —R(c,hb). Q(c) —R(c,c).
2. The answer set is LM(Gnd(P)) = {R(a,c),R(b,c),Q(a),Q(b)}.

3. As earlier, this interpretation captures intended answers to queries:
PE=R(a,c) ? yes PE=R(a,d)? no
P=Q(a)?  yes PE=Q(c) ? no

- J

© 2007 TKK / TCS

19

20



T-79.5102 / Autumn 2007 Positive programs

-

6. EXPRESSIVE POWER I

Rules are expressive enough to cover basic operations on relations as
present in relational algebra (SQL):

1. Union: EUNational(x) < Finn(X).
EUNational(X) «— Swede(X).

2. Intersection: Father(x) < Parent(x), Man(Xx).
3. Projection: Parent(X) < Parent(X,y).
4. Selection: Millionaire(X) < Assets(X,Y), Greater(y, 999999).

5. Composition: Result(X,y) « Student(x,1), Grade(i,y).
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Contrast with Relational AIgebraI

Unlike SQL (stands for Structured Query Language), positive
programs enable recursive definitions.

Example. E.g., the transitive closure of a relation is expressible:
Connection(x,y) < Flight(x,y).
Connection(X,y) < Flight(X, z), Connection(z,y).

On the other hand, the conditions used in the form of rules considered
so far cannot refer to complements of relations as in SQL.

Example. However, it is not trivial to add negation (~ below):
Man(a). Man(b). Man(c).

Shaves(c,X) < Man(x), ~Shaves(x,X). Shaves(a,a).

© 2007 TKK / TCS
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OBJECTIVES I

O You are able to define minimal models and the least model for
positive programs and to prove simple properties about them.

O You know the interconnection between the least model of a
positive program and its logical consequences.

O You are able to construct the least model for the given positive
program P by calculating the least fixpoint of Tp.

O You have some preliminary ideas how minimal models are

exploited in knowledge representation.

O You are aware of the basic similarities and differences of relational
algebra and rule-based languages.

J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Positive programs

-

TIME TO PONDERI

Consider two positive programs P; and P, and their union PLUP,.

Which of the following do hold in general?
1. LM(PlLJ Pz) - LM(Pl) U LM(Pz).
2. LM(P)ULM(P) CLM(PLUP,).
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