

6

Satisfaction and Entailment

Definitions. Assume rules and constraints based on a set of atoms \mathcal{P} .

- 1. A rule $a \leftarrow b_1, \dots, b_n$ is *satisfied* in an interpretation $I \subseteq \mathcal{P}$, denoted $I \models a \leftarrow b_1, \dots, b_n$, iff $\{b_1, \dots, b_n\} \subseteq I$ implies $a \in I$.
- 2. A constraint $\leftarrow b_1, \dots, b_n$ is *satisfied* in an interpretation $I \subseteq \mathcal{P}$, denoted $I \models \leftarrow b_1, \dots, b_n$, iff $\{b_1, \dots, b_n\} \not\subseteq I$.
- 3. An interpretation $I \subseteq \mathcal{P}$ is a *model* of a set of rules and constraints $P \cup C$, denoted $M \models P \cup C$, iff $M \models r$ for each $r \in P \cup C$.
- 4. An atom *a* is a *logical consequence* of $P \cup C$ iff $a \in M$ for every interpretation $M \subseteq \mathcal{P}$ such that $M \models P \cup C$.

Proposition. Every positive program *P* is *satisfiable* (has a model).

Proof. The interpretation M = Hb(P) is trivially a model of P.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Positive programs

Translating Constraints into Rules

- Any set Horn clauses S, effectively a union $P \cup C$ of a positive program P and a set of constraints C, is not satisfiable in general.
- ► E.g., $\{p, \neg p\}$ corresponding to $\{p\} \cup \{\leftarrow p\}$ has no models.
- \blacktriangleright Any set of constraints C can be translated into a positive program

 $\operatorname{Tr}_{\operatorname{RULE}}(C) = \{ \bot \leftarrow b_1, \dots, b_n \mid \leftarrow b_1, \dots, b_n \in C \}$

where \perp is a new atom not appearing in Hb(P) nor Hb(C).

Proposition. A set of Horn clauses *S*, viewed as a union $P \cup C$ in the way explained above, is satisfiable $\iff P \cup \operatorname{Tr}_{\operatorname{RULE}}(C) \not\models \bot$.

Example. The *unsatisfiability* of $\{p, \neg p\}$ can be determined using the translation given above: $\{p\} \cup \text{Tr}_{\text{RULE}}(\{\leftarrow p\}) = \{p. \perp \leftarrow p. \} \models \perp$.

3. MINIMAL MODELS

Definition.

- 1. An interpretation $M \subseteq \mathcal{P}$, represented as the set of atoms true in M, is smaller than another interpretation $N \subseteq \mathcal{P}$ iff $M \subset N$.
- 2. An interpretation $M \subseteq Hb(P)$ is a *minimal model* of a (positive) program P iff $M \models P$ and there is no smaller model $N \models P$.

Example. Consider the following positive program:

$$\mathbf{P} = \{q \leftarrow r. \ r \leftarrow p, q. \}.$$

- The interpretation $M = \{q, r\}$ is a model of P.
- However, M is not minimal because $N = \emptyset$ is also a model of P.
- But, in contrast, N is a minimal model of P.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

```
Positive programs
```

Properties of Minimal Models (I)

Theorem. If $M_i \subseteq \operatorname{Hb}(P)$ (where $i \in I$) is a collection of models for a positive program P, then $M = \bigcap \{M_i \mid i \in I\}$ is also a model of P.

Proof. Suppose that $M \not\models P$.

- \implies $\exists a \leftarrow b_1, \dots, b_n \in P$ such that $\{b_1, \dots, b_n\} \subseteq M$ but $a \notin M$
- $\implies \{b_1,\ldots,b_n\}\subseteq M_i \text{ for all } i\in I$
- \implies $a \in M_i$ for all $i \in I$ because $M_i \models P$,

 $a \leftarrow b_1, \dots, b_n \in P$ and $M_i \models a \leftarrow b_1, \dots, b_n$

 \implies $a \in M = \bigcap \{M_i \mid i \in I\}$, a contradiction.

Thus $M \models P$ is necessarily the case.

11

. CONSTRUCTING THE LEAST MODEL

Definition. Let *P* be a positive logic program. Then define an operator $T_P : \mathbf{2}^{\operatorname{Hb}(P)} \to \mathbf{2}^{\operatorname{Hb}(P)}$ on interpretations $I \subseteq \operatorname{Hb}(P)$ as follows:

 $\mathbf{T}_P(I) = \{a \in \mathrm{Hb}(P) \mid a \leftarrow b_1, \dots, b_n \in P \text{ and } \{b_1, \dots, b_n\} \subseteq I\}.$

An interpretation I is a *fixpoint* of the operator T_P iff $T_P(I) = I$.

A fixpoint I is the *least fixpoint* of T_P iff $I \subseteq I'$ for every $I' = T_P(I')$.

Example. Let us analyze $P = \{a \leftarrow a. b. c \leftarrow b. d \leftarrow a, b. \}$.

- 1. Now $T_P(\{a\}) = \{a, b\}$ and $T_P(\{a, b\}) = \{a, b, c, d\}$,
- 2. the interpretation $M_1 = \{a, b, c, d\}$ is a fixpoint of T_P since $T_P(M_1) = \{a, b, c, d\} = M_1$, and
- 3. the interpretation $M_2 = \{b, c\}$ is the least fixpoint of T_P .

Properties of the Least Fixpoint (I)

Proposition. For a positive program P, the operator T_P has the least fixpoint $lfp(T_P) = \bigcap \{M \subseteq Hb(P) \mid M = T_P(M)\}.$

Proof. Every monotonic operator has a least fixpoint (Knaster-Tarski) which is unique. For T_P , we denote this fixpoint by $lfp(T_P)$.

For the intersection property, it is sufficient to note that by definition $lfp(T_P) \subseteq M$ for any $M = T_P(M)$, and $M = lfp(T_P)$ in particular. \Box

The unique fixpoint $lfp(T_P)$ can be constructed iteratively:

Definition. For a positive program P, define a sequence of interpretations by setting $T_P \uparrow 0 = \emptyset$, $T_P \uparrow i + 1 = T_P(T_P \uparrow i)$ for i > 0, and the *limit* $T_P \uparrow \infty = \bigcup_{i=0}^{\infty} T_P \uparrow i$ of the sequence.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Positive programs

16

15

Properties of the Least Fixpoint (II)

Theorem. For a positive program P, $lfp(T_P) = T_P \uparrow \infty = LM(P)$. **Proof.** We will prove the claim $lfp(T_P) = T_P \uparrow \infty$ when P is *finite*; the infinite case uses *transfinite induction* and the *compactness* of T_P . (\subseteq) The monotonicity of T_P guarantees that the sequence of interpretations $T_P \uparrow i$ is increasing. Hence $T_P(T_P \uparrow i) = T_P \uparrow i$ for some $i \ge 0$. Thus $lfp(T_P) \subseteq T_P \uparrow i \subseteq T_P \uparrow \infty$. (\supseteq) It follows by induction on i that $T_P \uparrow i \subseteq lfp(T_P)$ for every $i \ge 0$. For $lfp(T_P) = LM(P)$, we note the following: (\subseteq) It follows by induction that $T_P \uparrow i \subseteq LM(P)$ for every $i \ge 0$. (\supseteq) Any fixpoint $M = T_P(M)$ is also a model of P. Thus the intersection of models, i.e. LM(P), is contained in M.

Positive programs Positive program P involving variables is determined by the respective ground program Gnd(P). It is possible to view Gnd(P) as a propositional program and it becomes infinite if P has function symbols and variables. Definition. Let P be a positive program—potentially involving variables. The unique answer set of P is LM(Gnd(P)). This set gives also the correctness criterion for query evaluation: Proposition. Suppose that Q(t) is a query involving variables x₁,...,x_n for a positive program P. Then P ⊨ ∃x₁...∃x_nQ(t) ⇐ there is a ground substitution θ, which replaces each variable x_i with a ground term t_i ∈ Hu(P), such that Q(t)θ ∈ LM(Gnd(P)).

	18	T-79.5102 / Autumn 2007 Positive programs
		Example
		Consider a positive program P with the following rules
5		$R(a,c).$ $R(b,c).$ $Q(x) \leftarrow R(x,y).$
		1. The ground program over $\operatorname{Hu}(P)=\{a,b,c\}$ contains the rules
		$R(a,c)$. $Q(a) \leftarrow R(a,a)$. $Q(a) \leftarrow R(a,b)$. $Q(a) \leftarrow R(a,c)$.
		$R(b,c)$. $Q(b) \leftarrow R(b,a)$. $Q(b) \leftarrow R(b,b)$. $Q(b) \leftarrow R(b,c)$.
		$Q(c) \leftarrow R(c,a).$ $Q(c) \leftarrow R(c,b).$ $Q(c) \leftarrow R(c,c).$
		2. The answer set is $LM(Gnd(P)) = \{R(a,c), R(b,c), Q(a), Q(b)\}.$
		3. As earlier, this interpretation captures intended answers to queries:
		$P \models R(a,c)$? yes $P \models R(a,d)$? no
		$P\models Q(a)$? yes $P\models Q(c)$? no
١		

Reconsider the program $P = \{a \leftarrow a, b, c \leftarrow b, d \leftarrow a, b\}$:

$$T_P \uparrow 0 = \emptyset,$$

$$T_P \uparrow 1 = T_P(T_P \uparrow 0) = T_P(\emptyset) = \{b\},$$

$$T_P \uparrow 2 = T_P(T_P \uparrow 1) = T_P(\{b\}) = \{b,c\},$$

$$T_P \uparrow 3 = T_P(T_P \uparrow 2) = T_P(\{b,c\}) = \{b,c\}, \dots$$

$$T_P \uparrow i + 1 = T_P(T_P \uparrow i) = T_P(\{b,c\}) = \{b,c\}, \dots$$

$$T_P \uparrow \infty = \bigcup_{i=0}^{\infty} T_P \uparrow i = \{b,c\} = \mathrm{lfp}(P) = \mathrm{LM}(P).$$

Example

Remarks. If P is a *finite* positive program (as above), then $lfp(T_P)$ is always reached with a finite number of steps. For each $a \in lfp(P)$, there is a finite $i \ge 0$ such that $a \in T_P \uparrow i$, even if P is *infinite* !

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

 \Longrightarrow

Positive programs

5. PROGRAMS WITH VARIABLES

 Disregarding any non-logical features, logic programs and deductive databases can be viewed as sets of *rules* of the form

 $P(\vec{t}) \leftarrow P_1(\vec{t_1}), \dots, P_n(\vec{t_n})$

where $P(\vec{t})$ and $P_i(\vec{t}_i)$'s are atomic formulas involving lists of terms $\vec{t}, \vec{t_1}, ..., \vec{t_n}$ as their arguments.

- ➤ Variables appearing in rules are universally quantified.
- Each set of rules P, also called a *positive program* in the sequel, has a Herbrand base Hb(P) associated with it.
- ➤ A rule $P(\vec{t}) \leftarrow P_1(\vec{t_1}), \dots, P_n(\vec{t_n})$ with variables x_1, \dots, x_m stands for its all ground instances, each of which is obtained by substituting the variables x_1, \dots, x_m by some ground terms s_1, \dots, s_m .

OBJECTIVES

- You are able to define minimal models and the least model for positive programs and to prove simple properties about them.
- You know the interconnection between the least model of a positive program and its logical consequences.
- ➤ You are able to construct the least model for the given positive program P by calculating the least fixpoint of T_P.
- ➤ You have some preliminary ideas how minimal models are exploited in knowledge representation.
- You are aware of the basic similarities and differences of relational algebra and rule-based languages.

© 2007 TKK / TCS

6. EXPRESSIVE POWER

Rules are expressive enough to cover basic operations on relations as present in *relational algebra* (SQL):

1. Union: EUNational(x) \leftarrow Finn(x).

 $\mathsf{EUNational}(x) \leftarrow \mathsf{Swede}(x).$

- 2. Intersection: $Father(x) \leftarrow Parent(x), Man(x)$.
- 3. Projection: $Parent(x) \leftarrow Parent(x,y)$.
- 4. Selection: Millionaire(x) \leftarrow Assets(x,y), Greater(y,999999).
- 5. Composition: $\text{Result}(x, y) \leftarrow \text{Student}(x, i), \text{Grade}(i, y).$

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Positive programs

Contrast with Relational Algebra

Unlike SQL (stands for Structured Query Language), positive programs enable recursive definitions.

Example. E.g., the *transitive closure* of a relation is expressible:

Connection(x, y) \leftarrow Flight(x, y). Connection(x, y) \leftarrow Flight(x, z), Connection(z, y).

On the other hand, the conditions used in the form of rules considered so far cannot refer to *complements* of relations as in SQL.

Example. However, it is not trivial to add negation (\sim below):

```
\begin{split} &\mathsf{Man}(a). \ \ \mathsf{Man}(b). \ \ \mathsf{Man}(c). \\ &\mathsf{Shaves}(c,x) \leftarrow \mathsf{Man}(x), \sim \mathsf{Shaves}(x,x). \quad \mathsf{Shaves}(a,a). \end{split}
```