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Leture 1: IntrodutionOutline1. Delarative problem solving2. Answer set programming3. Some prerequisites
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1. DECLARATIVE PROBLEM SOLVING

➤ Delarative programming languages allow the spei�ation of whatis to be omputed rather than how the omputation takes plae.

➤ PROLOG (PROgramming in LOGi) is a prototypial languagethat was developed for delarative programming.

Nat(0). Nat(s(X)) :- Nat(X).

➤ Programming in a proedural language suh as Pasal, C, or Javais muh about ontrolling the exeution order of ommands.
unsigned int f(unsigned int x) {

if(x == 0 || x==1)

return 1;

else return x*f(x-1);

} © 2007 TKK / TCS
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Coneptual Model

A problem is solved using a delarative programming language by1. modelling the problem domain using the language,2. performing atual omputation steps to produe output, and3. extrating a solution for the problem from the output.

Problem Solution
↓ ↑Model −→ Output

Compilers and/or interpreters an be used to exeute the model.

© 2007 TKK / TCS

AB
T-79.5102 / Autumn 2007 Introdution 4

Basi Requirements

Any delarative language should

➤ have a lear delarative semantis,

➤ enable onise formalization of a variety of problem domains,

➤ lend itself to modular program development, and

➤ provide su�ient performane and salability.

Remark. The last two requirements may endanger the delarativenature of programming (f. the use of uts �!� in PROLOG), i.e.,a form of ontrol neessary for e�ieny reasons.
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2. ANSWER SET PROGRAMMINGAnswer set programming (ASP) is a paradigm for delarativeprogramming that e�etively emerged in the late nineties.

➤ A rule-based language is used for problem enodings.

➤ Every program P, i.e., a set of rules, has a learly de�nedsemantis (the set of answer sets assoiated with P).

➤ The order of rules and the order of individual onditions in rules isirrelevant whih gives a delarative nature for answer sets.

➤ Dediated searh engines�answer set solvers�are used toompute an answer set or several answer sets for a program.

© 2007 TKK / TCS
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Revising the Coneptual Model for ASP

A problem is enoded so that the answer sets of the respetive programand the solutions of the problem are in a tight orrespondene.

Problem Solution

↓ ↑Set of rules −→ Answer set

Current answer set solvers expet ground programs as their inputwhih implies a preproessing step in order to remove variables.

© 2007 TKK / TCS
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Example: Graph Coloring
edge(a,b). edge(b,c). edge(c,a). % Edges

node(X) :- edge(X,Y). % Extract nodes

node(Y) :- edge(X,Y).

r(X) :- not g(X), not b(X), node(X). % Red

g(X) :- not b(X), not r(X), node(X). % Green

b(X) :- not r(X), not g(X), node(X). % Blue

:- r(X), r(Y), edge(X,Y). % Constraints

:- g(X), g(Y), edge(X,Y).

:- b(X), b(Y), edge(X,Y).
© 2007 TKK / TCS
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$ lparse color.lp > color.sm

$ lplist color.sm | less

$ smodels 1 < color.sm

Answer: 1

Stable Model: r(a) g(c) b(b) edge(c,a) edge(b,c) edge(a,b) \

node(c) node(b) node(a)

True

Duration: 0.004

Number of choice points: 2

Number of wrong choices: 0

Number of atoms: 16

Number of rules: 24

Number of picked atoms: 22

Number of forced atoms: 0

Number of truth assignments: 77

Size of searchspace (removed): 9 (0)© 2007 TKK / TCS
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Roots of ASP

➤ Knowledge representation and reasoning

➤ Databases (SQL)

➤ Dedutive databases

➤ Logi programming (PROLOG)� SLD-Resolution� Negation as failure to prove� Clark's ompletion and supported models

➤ Constraint programming
© 2007 TKK / TCS
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Example: SuDoku Puzzle

number(1). number(2). number(3). number(4). number(5).

number(6). number(7). number(8). number(9).

border(1). border(4). border(7).

region(X,Y) :- border(X), border(Y).

1 { value(X,Y,N):number(X):number(Y):

X1<=X:X<=X1+2:Y1<=Y:Y<=Y1+2 } 1

:- number(N), region(X1,Y1).

:- 2 {value(X,Y,N):number(N)}, number(X), number(Y).

:- 2 {value(X,Y,N):number(Y)}, number(N), number(X).

:- 2 {value(X,Y,N):number(X)}, number(N), number(Y).© 2007 TKK / TCS
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Example. Royle's SuDoku puzzle with 16 lues gets solved in 52 ms.
$ lparse sudoku.lp royle.lp | smodels 1

smodels version 2.32. Reading...done

Answer: 1

Stable Model: value(8,8,1) value(4,7,1) ... value(3,1,9)

True

Duration: 0.052

Number of choice points: 1

Number of wrong choices: 0

Number of atoms: 1156

Number of rules: 928

Number of picked atoms: 321

Number of forced atoms: 51

Number of truth assignments: 8017

Size of searchspace (removed): 36 (0)© 2007 TKK / TCS
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Example. The orresponding solution an be extrated from theanswer set and then visualized as a solved SuDoku puzzle:

1 9 3 8 6 7 4 2 54 6 8 5 3 2 9 1 77 5 2 1 4 9 6 8 36 2 1 4 7 3 5 9 85 3 4 9 1 8 7 6 29 8 7 2 5 6 3 4 12 1 6 3 9 5 8 7 48 7 5 6 2 4 1 3 93 4 9 7 8 1 2 5 6

© 2007 TKK / TCS
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Example. Atually, there are 2 solutions for this 16 lue puzzle. Theother is obtained by exhanging the ourrenes of 8 and 9:

1 8 3 9 6 7 4 2 54 6 9 5 3 2 8 1 77 5 2 1 4 8 6 9 36 2 1 4 7 3 5 8 95 3 4 8 1 9 7 6 28 9 7 2 5 6 3 4 12 1 6 3 8 5 9 7 49 7 5 6 2 4 1 3 83 4 8 7 9 1 2 5 6

© 2007 TKK / TCS
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Appliations of ASP

➤ Produt on�guration

➤ Combinatorial problemsGraph problems, ombinatorial autions, . . .

➤ AI PlanningContingeny plans for the NASA spae shuttle

➤ Veri�ation and analysisCommuniation protools, seurity protools, . . .
➤ Information and data integrationSemanti web

© 2007 TKK / TCS
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Fators Behind the Suess of ASP
➤ The performane of omputers has inreased remarkably.
➤ Implementation tehniques have advaned rapidly.
➤ Many e�ient solvers are publily available:

smodels, clasp, cmodels, dlv, . . .
➤ Rule-based languages are highly expressive�enabling oniseenodings for a wide variety of problems.
➤ ASP languages lend themselves to fast prototyping with littleprogramming e�ort.

© 2007 TKK / TCS
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3. SOME PREREQUISITES

➤ Propositional languages

➤ Interpretations and models

➤ Logial entailment

➤ First-order languages

➤ Strutures

➤ Herbrand bases

➤ Herbrand strutures and models

➤ Relational operations
© 2007 TKK / TCS
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Propositional Languages

➤ Any set of atomi sentenes P 6= /0, or atoms for short, indues apropositional language L� the set of well-formed sentenes.

➤ Sentenes are built using the atoms of P and propositionalonnetives ¬ (negation), ∧ (onjuntion), ∨ (disjuntion), →(impliation), and ↔ (equivalene).1. Atomi sentenes are sentenes.2. If α and β are sentenes, then expressions of the forms (¬α),

(α∨β), (α∧β), (α → β), (α ↔ β) are also sentenes.

➤ Propositional theories T are de�ned as subsets of L .Example. The theory T = {r∨g∨b, ¬r∨¬g, ¬g∨¬b, ¬b∨¬r}desribes the 3-oloring of a single node in a graph.

© 2007 TKK / TCS
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Interpretations and Models

➤ An interpretation I for L is de�ned as any subset of P :1. atoms in I are onsidered to be true and2. atoms in P \ I are false.

➤ If P is �nite, there are |2P | = 2|P | di�erent interpretations, eah ofwhih represents of a unique state of the world desribed in L .
➤ The satisfation I |= α of a sentene α ∈ L in an interpretation I isde�ned in the standard way.

➤ An interpretation I is a model of a theory T i� I |= T , i.e.,
I |= α holds for every α ∈ T .Example. The theory T = {r∨g∨b, ¬r∨¬g, ¬g∨¬b, ¬b∨¬r}based on P = {r,g,b} has models M1 = {r}, M2 = {g}, and M3 = {b}.© 2007 TKK / TCS
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Logial Entailment

➤ A sentene α is a logial onsequene of a theory T , denoted
T |= α, i� M |= α for every model M |= T .

➤ The set of logial onsequenes Cn(T ) = {α ∈ L | T |= α}.
➤ The operator Cn(·) has the properties of a losure operator.For any T1 and T2,1. T1 ⊆ Cn(T1),2. T1 ⊆ T2 =⇒ Cn(T1) ⊆ Cn(T2), and3. Cn(Cn(T1)) = Cn(T1).Example. Consider the theory T = {a, a → b, ¬b∨ c, d →¬c} basedon P = {a,b,c,d}. The theory has a unique model M = {a,b,c}.

=⇒ Cn(T ) = {a, a → b, b, ¬b∨ c, c, d →¬c, ¬d, c∨d, . . .}.© 2007 TKK / TCS
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First-Order Languages (I)

➤ A �rst-order language L is based on mutually disjoint sets of� onstant symbols C ,� variable symbols V ,� funtion symbols F , and� relation symbols R .

➤ A term is either1. a onstant symbol c from C ,2. a variable symbol v from V , or3. an expression of the form f (t1, . . . , tn) where f is a funtionsymbol of arity n > 0 from F and t1, . . . ,tn are terms.Remark. Constants represent funtion symbols of arity 0.

© 2007 TKK / TCS
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First-Order Languages (II)

➤ An atomi formula is an expression of the form1. R for eah relation symbol of arity 0 from R ,2. t1 = t2 where t1 and t2 are terms, or3. R(t1, . . . , tn) where R is a relation symbol of arity n > 0 from Rand t1, . . . ,tn are terms.

➤ Atomi formulas are formulas.

➤ If α and β are formulas and v is a variable from V , thenexpressions of the forms

(¬α), (α∨β), (α∧β), (α → β), (α ↔ β), (∀vα), and (∃vα)are also formulas.

➤ A sentene is a formula having no free ourrenes of variables.© 2007 TKK / TCS
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Strutures (I)

➤ An interpretation for a �rst-order language L is a struture Sbased on a universe U whih is any non-empty set and1. eah c ∈ C is mapped to an element cS ∈U ,2. eah v ∈ V is mapped to an element vS ∈U ,3. eah f ∈ F is mapped to a funtion f S : Un →U where n isthe arity of f , and4. eah R ∈ R with an arity n is mapped to a relation RS ⊆Un.
➤ Given a struture S, eah term t is mapped to an element ts ∈U .Example. Given a onstant symbol 0 and a unary (of arity 1) funtionsymbol s we may de�ne a struture S based on U = {0,1,2, . . .} bysetting 0S = 0 and sS : x 7→ x+1. Thus (s(s(s(0))))S = 3.

© 2007 TKK / TCS
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Strutures (II)

➤ Atomi formulas R, t1 = t2, and R(t1, ..., tn) are satis�ed by S i�
〈〉 ∈ RS, (t1)S = (t2)S, and 〈(t1)S, . . . ,(tn)S〉 ∈ RS, respetively.

➤ The satisfation of a �rst order formula/sentene α in a strutureis de�ned in the standard way.
➤ Strutures that are models of sentenes (S |= α) and theories(S |= T ) are distinguished in analogy to propositional logi.

➤ Moreover, the de�nition of T |= α, i.e., whether a sentene α is alogial onsequene of a theory T , remains unhanged.

Example. For T = {E(0), ∀x(E(x) → O(s(x))), ∀x(O(x) → E(s(x)))}formalizing even natural numbers: T |= E(s(s(0))) but T 6|= ¬E(s(0)).

© 2007 TKK / TCS
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Herbrand Bases

➤ A ground term is a term having no ourrenes of variables.

➤ Given the sets C and F (see above), the Herbrand universe is theset of ground terms onstrutible using the symbols of C and F .

➤ Given the set R , the Herbrand base onsists of atomi sentenes

R(t1, . . . , tn) where R ∈ R is of arity n and eah ti is a ground term.

➤ A Herbrand instane of an atomi formula R(t1, ..., tn) is obtainedby substituting ground terms for variables ourring in t1, . . . , tn.

➤ We may also de�ne the Herbrand base Hb(T ) of a theory T byinspeting whih onstant/funtion symbols our in T .Example. For the previous theory T formalizing even naturalnumbers, we have Hb(T ) = {E(0),O(0),E(s(0)),O(s(0)), . . .}.© 2007 TKK / TCS
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Herbrand Strutures and Models

➤ A Herbrand struture S is based on a �xed interpretation ofonstant and funtion symbols over the Herbrand universe:1. Eah c ∈ C is mapped to cS = c.2. Eah f ∈ F is mapped to f S : 〈t1, . . . , tn〉 7→ f (t1, ..., tn).

=⇒ Only interpretations of variables and prediates an vary!

➤ Any Herbrand struture S an be viewed as a propositionalinterpretation I = {R(t1, . . . , tn) ∈ Hb(T ) | S |= R(t1, ..., tn)}.

➤ A Herbrand model M of a theory T is a Herbrand struture thatsatis�es all sentenes of T .Example. For the theory T formalizing even natural numbers, we havea Herbrand model M = {E(0),O(s(0)),E(s(s(0))),O(s(s(s(0)))), . . .}.

© 2007 TKK / TCS
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Relational operations

Assume that R1 and R2 are binary relations (of arity 2) over a �xeduniverse U , i.e., R1 ⊆U2 and R2 ⊆U2.1. The union of R1 and R2 is

R1 ∪R2 = {〈x,y〉 ∈U2 | 〈x,y〉 ∈ R1 or 〈x,y〉 ∈ R2}.2. The intersetion of R1 and R2 is

R1 ∩R2 = {〈x,y〉 ∈U2 | 〈x,y〉 ∈ R1 and 〈x,y〉 ∈ R2}.3. The projetions of R1 w.r.t. the �rst/seond arguments are
P1 = {x ∈U | 〈x,y〉 ∈ R1} and P2 = {y ∈U | 〈x,y〉 ∈ R1}.4. The omposition of R1 of R2 is

R1 ◦R2 = {〈x,y〉 ∈U2 | 〈x,z〉 ∈ R1 and 〈z,y〉 ∈ R2}.

© 2007 TKK / TCS
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OBJECTIVES
➤ You have the neessary premises for the ourse, i.e., you arefamiliar with the syntax and semantis of lassial logi.
➤ You know the main harateristis of delarative programminglanguages and understand the di�erene w.r.t. proedural ones.

➤ You understand the oneptual model of answer set programming.

➤ You are able to list the basi steps whih are required to to applyASP in delarative problem solving.
© 2007 TKK / TCS
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TIME TO PONDERDe�nition. The set of lassial models assoiated with a propositionaltheory T is CM(T ) = {M ⊆ Hb(T ) | M |= T}.Problem. Let T1 and T2 be arbitrary propositional theories.Whih one of the following is orret in general?1. CM(T1 ∪T2) = CM(T1)∩CM(T2).2. CM(T1 ∪T2) = {M1 ∪M2 | M1 ∈ CM(T1) and M2 ∈ CM(T2)}.3. CM(T1 ∪T2) =

{M1 ∪M2 | M1 ∈ CM(T1), M2 ∈ CM(T2), and M1 ∩H = M2 ∩H}where H = Hb(T1)∩Hb(T2).
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