

% Extract nodes

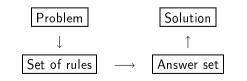
% Constraints

2. ANSWER SET PROGRAMMING

Answer set programming (ASP) is a paradigm for declarative programming that effectively emerged in the late nineties.

- ► A rule-based language is used for problem encodings.
- Every program P, i.e., a set of rules, has a clearly defined semantics (the set of answer sets associated with P).
- The order of rules and the order of individual conditions in rules is irrelevant which gives a declarative nature for answer sets.
- Dedicated search engines—answer set solvers—are used to compute an answer set or several answer sets for a program.

© 2007 TKK / TCS


T-79.5102 / Autumn 2007

6

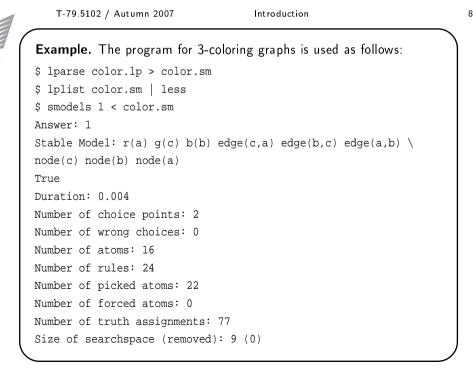
Revising the Conceptual Model for ASP

Introduction

A problem is encoded so that the answer sets of the respective program and the solutions of the problem are in a tight correspondence.

Current answer set solvers expect *ground* programs as their input which implies a preprocessing step in order to remove variables.

Example: Graph Coloring


edge(a,b). edge(b,c). edge(c,a). % Edges

node(X) :- edge(X,Y). node(Y) :- edge(X,Y).

r(X) :- not g(X), not b(X), node(X). % Red g(X) :- not b(X), not r(X), node(X). % Green b(X) :- not r(X), not g(X), node(X). % Blue

:- r(X), r(Y), edge(X,Y).:- g(X), g(Y), edge(X,Y).:- b(X), b(Y), edge(X,Y).

 \odot 2007 TKK / TCS

	T-79.5102 / Autumn 2007	Introduction			T-79.5102 / Autumn 2			Introduc	lion		
				((Example. Royle's Su	Doku pı	zzle wi	:h 16 c	lues ge	ts solved i	in 52 ms
	Roots of	of ASP		\$	lparse sudoku.lp	p royle	.lp	smodel	s 1		
		JIAJI		s	models version 2.	32. Rea	ading.	done			
	Knowledge representation and			A	nswer: 1						
	 Knowledge representation and 	reasoning		S	Stable Model: valu	ue(8,8,	l) val	1e(4,7	,1)	. value	(3,1,9)
	► Databases (SQL)			Г	rue						
	Deductive databases			E	Ouration: 0.052						
				N	Number of choice p	points:	1				
	 Logic programming (PROLOG) 			N	Number of wrong ch	noices:	0				
	 SLD-Resolution 			N	Number of atoms: 1	L156					
	 Negation as failure to prove 			N	Number of rules: 9	928					
	 Clark's completion and suppo 	orted models		N	Number of picked a	atoms:	321				
	 Constraint programming 			N	Number of forced a	atoms:	51				
				N	Number of truth as	ssignme	nts: 8	017			
				S	lize of searchspac	ce (rem	oved):	36 (0)		
$\overline{\ }$											
	_					_					
	© 2007 T	KK / TCS				©	2007 TK	< / тсs			
	© 2007 T T-79.5102 / Autumn 2007	KK / TCS	10		T-79.5102 / Autumn 2	-	2007 TK	<pre>< / TCS Introduce</pre>	tion		
			10		T-79.5102 / Autumn 2	-	2007 TK	·	tion		
$\left(\right)$	T-79.5102 / Autumn 2007		10			007		Introduc		acted from	n the
$\left(\right)$	T-79.5102 / Autumn 2007	Introduction	10		Example. The corres	007 ponding	solutio	Introduc	e extra		n the
	T-79.5102 / Autumn 2007 Example: Su	Introduction	10			007 ponding	solutio	Introduc	e extra		the
	T-79.5102 / Autumn 2007 Example: Su umber(1). number(2). number(3).	Introduction Doku Puzzle number(4). number(5).	10		Example. The corres	007 ponding visualized	solutio I as a s	Introduc n can b olved S	e extra uDoku	puzzle:	the
	T-79.5102 / Autumn 2007 Example: Su	Introduction Doku Puzzle number(4). number(5).	10		Example. The corres	007 ponding	solutio	Introduc n can b olved S	e extra	puzzle:	the
nı	T-79.5102 / Autumn 2007 Example: Su umber(1). number(2). number(3).	Introduction Doku Puzzle number(4). number(5).	10		Example. The corres	oo7 ponding visualized 9 3	solutio I as a s	Introduce n can b olved S	e extra uDoku	puzzle:	1 the
nı	T-79.5102 / Autumn 2007 Example: Su umber(1). number(2). number(3). umber(6). number(7). number(8).	Introduction Doku Puzzle number(4). number(5).	10		Example. The corres	oo7 ponding visualized 93 68	solutio l as a s 8 6 5 3	Introduce n can b olved S 7 4 2 9	e extra uDoku 2 5 1 7	puzzle:	the
nı bo	T-79.5102 / Autumn 2007 Example: Su umber(1). number(2). number(3). umber(6). number(7). number(8).	Introduction Doku Puzzle number(4). number(5). number(9).	10		Example. The corres inswer set and then v 1 4 7	007 ponding visualized 9 3 6 8 5 2	solutio as a s 8 6 5 3 1 4	Introduce n can b olved S 7 4 2 9 9 6	e extra uDoku 2 5 1 7 8 3	puzzle:	n the
nı bo re	T-79.5102 / Autumn 2007 Example: Su umber(1). number(2). number(3). umber(6). number(7). number(8). order(1). border(4). border(7). egion(X,Y) :- border(X), border	Introduction Doku Puzzle number(4). number(5). number(9). (Y).	10		Example. The corres inswer set and then v 1 4 7 6	007 ponding visualized 9 3 6 8 5 2 6 2 1	solutio as a s 8 6 5 3 1 4 4 7	Introduce n can b olved S 7 4 2 9 9 6 3 5	e extra uDoku 2 5 1 7 8 3 9 8	puzzle:	n the
nı bo re	T-79.5102 / Autumn 2007 Example: Su umber(1). number(2). number(3). umber(6). number(7). number(8). order(1). border(4). border(7). egion(X,Y) :- border(X), border { value(X,Y,N):number(X):number	Introduction Doku Puzzle number(4). number(5). number(9). (Y). r(Y):	10		Example. The corres inswer set and then v 1 4 7 6	007 ponding visualized 9 3 6 8 5 2	solutio as a s 8 6 5 3 1 4	Introduce n can b olved S 7 4 2 9 9 6 3 5	e extra uDoku 2 5 1 7 8 3	puzzle:	n the
nı bo re	T-79.5102 / Autumn 2007 Example: Su umber(1). number(2). number(3). umber(6). number(7). number(8). order(1). border(4). border(7). egion(X,Y) :- border(X), border { value(X,Y,N):number(X):number X1<=X:X<=X1+2:Y1<=Y:Y<=Y1+2	Introduction Doku Puzzle number(4). number(5). number(9). (Y). r(Y):	10		Example. The corresonswer set and then v 1 4 7 6 5	007 ponding visualized 9 3 6 8 5 2 6 2 1	solutio as a s 8 6 5 3 1 4 4 7	Introduce n can b olved S 7 4 2 9 9 6 3 5 8 7	e extra uDoku 2 5 1 7 8 3 9 8	puzzle:	n the
nı bo re	T-79.5102 / Autumn 2007 Example: Su umber(1). number(2). number(3). umber(6). number(7). number(8). order(1). border(4). border(7). egion(X,Y) :- border(X), border { value(X,Y,N):number(X):number	Introduction Doku Puzzle number(4). number(5). number(9). (Y). r(Y):	10		Example. The correst inswer set and then v 1 4 7 6 5 9	007 ponding visualized 9 3 6 8 5 2 5 2 1 3 4	solutio as a s 8 6 5 3 1 4 4 7 9 1	Introduce n can b olved S 7 4 2 9 6 3 5 8 7 6 3	e extra uDoku 2 5 1 7 8 3 9 8 6 2	puzzle:	the
nu bo re 1	<pre>T-79.5102 / Autumn 2007</pre>	<pre>Introduction Doku Puzzle number(4). number(5). number(9). (Y). r(Y): } 1</pre>	10		Example. The corres inswer set and then v 1 4 7 6 5 9 2	007 ponding visualized 9 3 6 8 5 2 6 2 1 6 2 1 6 3 4 8 7 2 1 6	solutio as a s 8 6 5 3 1 4 4 7 9 1 2 5 3 9	Introduct n can b olved S 7 4 2 9 9 6 3 5 6 3 5 8	e extra uDoku 2 5 1 7 8 3 9 8 6 2 4 1 7 4	puzzle:	the
nı bo 1	<pre>T-79.5102 / Autumn 2007</pre>	<pre>Introduction Doku Puzzle number(4). number(5). number(9). (Y). r(Y): } 1 umber(X), number(Y).</pre>	10		Example. The corresonswer set and then value of the set and the value of the set of the	007 ponding visualized 9 3 6 8 5 2 1 3 4 9 8 7 2 1 6 5 7 5	solutio as a s 3 4 4 7 9 1 2 5 3 9 6 2	Introduct n can b olved S 7 4 2 9 9 6 3 5 8 7 6 3 5 8 4 1	e extra uDoku 2 5 1 7 8 3 9 8 6 2 4 1 7 4 3 9	puzzle:	n the
nı bo 1 :-	<pre>T-79.5102 / Autumn 2007</pre>	<pre>Introduction Doku Puzzle number(4). number(5). number(9). (Y). r(Y): } 1 umber(X), number(Y). umber(N), number(X).</pre>			Example. The corresonswer set and then value of the set and the value of the set of the	007 ponding visualized 9 3 6 8 5 2 6 2 1 6 2 1 6 3 4 8 7 2 1 6	solutio as a s 8 6 5 3 1 4 4 7 9 1 2 5 3 9	Introduct n can b olved S 7 4 2 9 9 6 3 5 8 7 6 3 5 8 4 1	e extra uDoku 2 5 1 7 8 3 9 8 6 2 4 1 7 4	puzzle:	the

Example. Actually, there are 2 solutions for this 16 clue puzzle. The other is obtained by exchanging the occurrences of 8 and 9:

1	8	3	9	6	7	4	2	5
4	6	9			2			7
7	5	2	1	4	8	6	9	3
6	2	1	4	7	3	5	8	9
5	3	4	8	1	9	7	6	2
8	9	7	2	5	6	3	4	1
2	1	6	3	8	5	9	7	4
9	7	5	6	2	4	1	3	8
3	4	8	7	9	1	2	5	6

© 2007 TKK / TCS

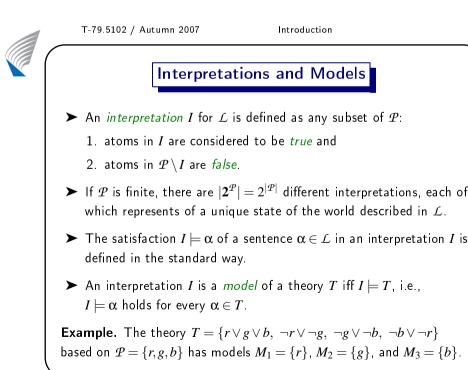
13

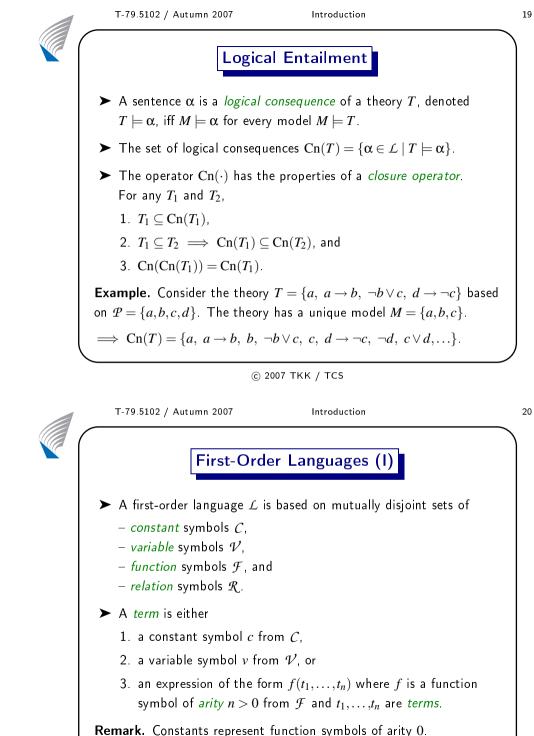
Factors Behind the Success of ASP

- > The performance of computers has increased remarkably.
- ► Implementation techniques have advanced rapidly.
- Many efficient solvers are publicly available: smodels, clasp, cmodels, dlv, ...
- Rule-based languages are highly expressive—enabling concise encodings for a wide variety of problems.
- ASP languages lend themselves to fast prototyping with little programming effort.

© 2007 TKK / TCS

16


18


Propositional Languages

- > Any set of *atomic sentences* $\mathcal{P} \neq \emptyset$, or *atoms* for short, induces a propositional language \mathcal{L} — the set of well-formed sentences.
- \blacktriangleright Sentences are built using the atoms of \mathcal{P} and propositional connectives \neg (negation), \land (conjunction), \lor (disjunction), \rightarrow (implication), and \leftrightarrow (equivalence).
 - 1 Atomic sentences are *sentences*.
 - 2. If α and β are sentences, then expressions of the forms $(\neg \alpha)$, $(\alpha \lor \beta), (\alpha \land \beta), (\alpha \to \beta), (\alpha \leftrightarrow \beta)$ are also sentences.
- \blacktriangleright Propositional theories T are defined as subsets of \mathcal{L} .

Example. The theory $T = \{r \lor g \lor b, \neg r \lor \neg g, \neg g \lor \neg b, \neg b \lor \neg r\}$ describes the 3-coloring of a single node in a graph.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

24

- > Atomic formulas R, $t_1 = t_2$, and $R(t_1, ..., t_n)$ are satisfied by S iff $\langle \rangle \in \mathbb{R}^S$, $(t_1)^S = (t_2)^S$, and $\langle (t_1)^S, \dots, (t_n)^S \rangle \in \mathbb{R}^S$, respectively.
- \blacktriangleright The satisfaction of a first order formula/sentence α in a structure is defined in the standard way.
- > Structures that are *models* of sentences $(S \models \alpha)$ and theories $(S \models T)$ are distinguished in analogy to propositional logic.
- > Moreover, the definition of $T \models \alpha$, i.e., whether a sentence α is a logical consequence of a theory T, remains unchanged.

Example. For $T = \{E(0), \forall x(E(x) \rightarrow O(s(x))), \forall x(O(x) \rightarrow E(s(x)))\}$ formalizing even natural numbers: $T \models E(s(s(0)))$ but $T \not\models \neg E(s(0))$.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Introduction **Herbrand Bases** > A ground term is a term having no occurrences of variables. \blacktriangleright Given the sets C and \mathcal{F} (see above), the Herbrand universe is the set of ground terms constructible using the symbols of C and \mathcal{F} . \blacktriangleright Given the set \mathcal{R} , the Herbrand base consists of atomic sentences $R(t_1,\ldots,t_n)$ where $R \in \mathcal{R}$ is of arity *n* and each t_i is a ground term. > A Herbrand instance of an atomic formula $R(t_1,...,t_n)$ is obtained by substituting ground terms for variables occurring in t_1, \ldots, t_n . \blacktriangleright We may also define the Herbrand base Hb(T) of a theory T by inspecting which constant/function symbols occur in T. **Example.** For the previous theory T formalizing even natural numbers, we have $Hb(T) = \{E(0), O(0), E(s(0)), O(s(0)), \ldots\}$.

First-Order Languages (II) ► An *atomic formula* is an expression of the form 1. R for each relation symbol of arity 0 from \mathcal{R} . 2. $t_1 = t_2$ where t_1 and t_2 are terms, or 3. $R(t_1, \ldots, t_n)$ where R is a relation symbol of arity n > 0 from \mathcal{R} . and t_1, \ldots, t_n are terms. ► Atomic formulas are *formulas*. \blacktriangleright If α and β are formulas and v is a variable from \mathcal{V} , then expressions of the forms $(\neg \alpha), (\alpha \lor \beta), (\alpha \land \beta), (\alpha \to \beta), (\alpha \leftrightarrow \beta), (\forall v\alpha), and (\exists v\alpha)$ are also formulas ► A sentence is a formula having no free occurrences of variables. © 2007 TKK / TCS T-79.5102 / Autumn 2007 22 Introduction Structures (I) \blacktriangleright An interpretation for a first-order language \mathcal{L} is a structure S based on a *universe* U which is any non-empty set and 1. each $c \in C$ is mapped to an element $c^{S} \in U$. 2. each $v \in \mathcal{V}$ is mapped to an element $v^S \in U$, 3. each $f \in \mathcal{F}$ is mapped to a function $f^S: U^n \to U$ where *n* is the arity of f, and 4. each $R \in \mathcal{R}$ with an arity *n* is mapped to a relation $R^S \subseteq U^n$. \blacktriangleright Given a structure S, each term t is mapped to an element $t^s \in U$. **Example.** Given a constant symbol 0 and a *unary* (of arity 1) function symbol s we may define a structure S based on $U = \{0, 1, 2, ...\}$ by setting $0^S = 0$ and $s^S : x \mapsto x+1$. Thus $(s(s(s(0))))^S = 3$.

 \blacktriangleright A Herbrand structure S is based on a fixed interpretation of

1. Each $c \in C$ is mapped to $c^S = c$.

satisfies all sentences of T.

constant and function symbols over the Herbrand universe:

2. Each $f \in \mathcal{F}$ is mapped to $f^S : \langle t_1, \ldots, t_n \rangle \mapsto f(t_1, \ldots, t_n)$.

 \blacktriangleright Any Herbrand structure S can be viewed as a propositional

interpretation $I = \{R(t_1, \dots, t_n) \in \operatorname{Hb}(T) \mid S \models R(t_1, \dots, t_n)\}$.

 \blacktriangleright A Herbrand model M of a theory T is a Herbrand structure that

Example. For the theory T formalizing even natural numbers, we have a Herbrand model $M = \{E(0), O(s(0)), E(s(s(0))), O(s(s(s(0)))), \ldots\}$.

© 2007 TKK / TCS

 \implies Only interpretations of variables and predicates can vary!

27

28

OBJECTIVES

- ➤ You have the necessary premises for the course, i.e., you are familiar with the syntax and semantics of classical logic.
- You know the main characteristics of declarative programming languages and understand the difference w.r.t. procedural ones.
- > You understand the conceptual model of answer set programming.
- You are able to list the basic steps which are required to to apply ASP in declarative problem solving.

 \odot 2007 TKK / TCS

T-79.5102 / Autumn 2007 26 T-79.5102 / Autumn 2007 Introduction Introduction **Relational operations** TIME TO PONDER Assume that R_1 and R_2 are binary relations (of arity 2) over a fixed **Definition.** The set of classical models associated with a propositional universe U, i.e., $R_1 \subseteq U^2$ and $R_2 \subseteq U^2$. theory T is $CM(T) = \{M \subseteq Hb(T) \mid M \models T\}.$ 1. The *union* of R_1 and R_2 is **Problem.** Let T_1 and T_2 be arbitrary propositional theories. $R_1 \cup R_2 = \{ \langle x, y \rangle \in U^2 \mid \langle x, y \rangle \in R_1 \text{ or } \langle x, y \rangle \in R_2 \}.$ Which one of the following is correct in general? 2. The *intersection* of R_1 and R_2 is 1. $\operatorname{CM}(T_1 \cup T_2) = \operatorname{CM}(T_1) \cap \operatorname{CM}(T_2)$. $R_1 \cap R_2 = \{ \langle x, y \rangle \in U^2 \mid \langle x, y \rangle \in R_1 \text{ and } \langle x, y \rangle \in R_2 \}.$ 2. $CM(T_1 \cup T_2) = \{M_1 \cup M_2 \mid M_1 \in CM(T_1) \text{ and } M_2 \in CM(T_2)\}.$ 3. The projections of R_1 w.r.t. the first/second arguments are 3. $CM(T_1 \cup T_2) =$ $P_1 = \{x \in U \mid \langle x, y \rangle \in R_1\}$ and $P_2 = \{y \in U \mid \langle x, y \rangle \in R_1\}.$ $\{M_1 \cup M_2 \mid M_1 \in CM(T_1), M_2 \in CM(T_2), \text{ and } M_1 \cap H = M_2 \cap H\}$ 4. The *composition* of R_1 of R_2 is where $H = \text{Hb}(T_1) \cap \text{Hb}(T_2)$. $R_1 \circ R_2 = \{ \langle x, y \rangle \in U^2 \mid \langle x, z \rangle \in R_1 \text{ and } \langle z, y \rangle \in R_2 \}.$

© 2007 TKK / TCS

© 2007 TKK / TCS