1

2

- 1 Terms and Definitions
- 2. Characterizing Stability
- 3. Clausal Representation
- 4. Experiments
- 5. Discussion

Further details are given in:

T. Janhunen: Representing Normal Programs with Clauses. In the Proceedings of the 16th European Conference on Artificial Intelligence, pages 358-362, Valencia, Spain, August 2004.

© 2005 TKK, Tietojenkäsittelyteorian laboratorio

T-79.5103 / Syksy 2005 From stability to propositional satisfiability

Motivation

> Our goal is to combine the knowledge representation capabilities of normal logic programs with the efficiency of SAT solvers.

> To realize this setting, we present a *polynomial* and *faithful* but non-modular translation.

© 2005 TKK, Tietojenkäsittelyteorian laboratorio

4

T-79.5103 / Syksy 2005

14

3. Clausal Representation

▶ We use an *atomic normal program* $Tr_{AT}(P) =$

 $\operatorname{Tr}_{\operatorname{SUPP}}(P) \cup \operatorname{Tr}_{\operatorname{CTR}}(P) \cup \operatorname{Tr}_{\operatorname{MIN}}(P) \cup \operatorname{Tr}_{\operatorname{MAX}}(P)$

as an intermediary representation when translating a normal program P into a set of clauses $Tr_{CL}(Tr_{AT}(P))$.

- Level numbers have to be captured using *binary counters* which are represented by vectors of propositional atoms.
- Certain primitives are formalized as subprograms:
 SEL(c), NXT(c,d), FIX(c), LT(c,d), and EQ(c,d).

© 2005 TKK, Tietojenkäsittelyteorian laboratorio

From stability to propositional satisfiability

- The level numbers associated with rules can be totally omitted, if all *non-binary* rules r with $|B^+(r)| > 2$ are translated away.
- A normal logic program P is partitioned into its strongly connected components C_1, \ldots, C_n on the basis of positive dependencies.
- > No counters are needed, if $|H(C_i)| = 1$ holds.
- ➤ The number of bits $\nabla C_i = \lceil \log_2(|H(C_i)| + 2) \rceil$ for other strongly connected components C_i .
- Fixed translation schemes can be devised for atomic, strictly unary, and strictly binary rules.

Example

For $P = \{a \leftarrow b; b \leftarrow a\}$, the translation $Tr_{AT}(P)$ contains the following rules for a:

 $b \leftarrow not \overline{bt(r_2)}; \overline{bt(r_2)} \leftarrow not bt(r_2); bt(r_2) \leftarrow not \overline{a};$ $\overline{a} \leftarrow not a; x \leftarrow not x, not \overline{a}, not min(a);$ $x \leftarrow not x, not \overline{bt(r_2)}, not \overline{lt(nxt(a), ctr(b))_1}; and$ $min(b) \leftarrow not \overline{bt(r_2)}, not \overline{eq(nxt(a), ctr(b))}$

in addition to four subprograms for choosing the values of ctr(a) and nxt(a) as well as comparing the latter with ctr(b). Rules that have to be introduced for b are symmetric.

The only stable model is $N = \{\overline{a}, \overline{b}, \overline{bt(r_1)}, \overline{bt(r_2)}\}$.

© 2005 TKK, Tietojenkäsittelyteorian laboratorio

T-79.5103 / Syksy 2005

18

Reachability Benchmark

Our benchmark problem is formalized as follows:

The order in which the reachability of nodes inferred cannot be determined beforehand.

© 2005 TKK, Tietojenkäsittelyteorian laboratorio

From stability to propositional satisfiability

Computing All Solutions

Number of Vertices	1	2	3	4	5
SMODELS	0.004	0.003	0.003	0.033	12
CMODELS	0.031	0.030	0.124	293	-
LP2ATOMIC+SMODELS	0.004	0.008	0.013	0.393	353
lp2sat+Chaff	0.011	0.009	0.023	1.670	-
lp2sat+relsat	0.004	0.005	0.018	0.657	1879
WF + LP2SAT + RELSAT	0.009	0.013	0.018	0.562	1598
Models	1	1	18	1606	565080
SCCs with $ H(C) > 1$	0	0	3	4	5
Rules (LPARSE)	3	14	39	84	155
Rules (LP2ATOMIC)	3	18	240	664	1920
Clauses (LP2SAT)	4	36	818	2386	7642
Clauses (WF+LP2SAT)	2	10	553	1677	5971

Computing Only One Solution

Number of Vertices	8	9	10
SMODELS	0.009	0.013	0.022
CMODELS	0.046	0.042	0.055
LP2ATOMIC+SMODELS	$>10^{4}$	$> 10^{4}$	$> 10^{4}$
lp2sat+chaff	0.771	32.6	254
LP2SAT+RELSAT	2.51	$> 10^{4}$	$> 10^{4}$
WF+LP2sat+relsat	2.80	4830	$> 10^{4}$
ASSAT	0.023	0.028	0.037

© 2005 TKK, Tietojenkäsittelyteorian laboratorio

T-79.5103 / Syksy 2005 From stability to propositional satisfiability 20 **5.** Discussion
The new characterization of stable models is based on *canonical* level numberings of atoms and rules.
The translation function Tr_{AT} o Tr_{CL} has distinctive properties:

it covers all finite normal programs *P*,
a bijective relationship of models is obtained,
the Herbrand base HB(*P*) is preserved,
the length ||Tr_{CL}(Tr_{AT}(*P*))|| is of order ||*P*|| × log₂ |HB(*P*)|, and
incremental updating is not needed.

Conclusions and Future Work

- ➤ Various kinds of closures of relations, such as *transitive closure*, can be properly captured with classical models.
- ➤ Our approach is competitive against other SAT-solver-based approaches when the task is to compute all stable models.
- ► Further optimizations should be pursued for in order to really compete with SMODELS.
- ➤ In the future, we intend to study techniques to reduce the number of binary counters and the numbers of bits involved in them.

© 2005 TKK, Tietojenkäsittelyteorian laboratorio