Spring 2008

T-79.5101 Advanced Course in Computational Logic Exercise Session 8 Solutions

1. **KB** is the set of symmetric frames. Let's translate the formula in the exercise into predicate logic:

```
 \begin{split} & \tau(\neg\Box\neg\Box\neg\Box\neg P, x) \to \tau(\neg\Box, P, x) \\ & = \tau(\Box\neg\Box\neg\Box\neg P, x) \to \tau(\neg\Box\neg P, x) \\ & = -\tau(\Box\neg\Box\neg\Box\neg P, x) \to \tau(\Box\neg P, x) \\ & = \neg \forall y \left(R(x,y) \to \tau(\Box\neg\Box, P, y)\right) \to \neg \forall y \left(R(x,y) \to \tau(\neg P, y)\right) \\ & = \neg \forall y \left(R(x,y) \to \tau(\Box\neg\Box, P, y)\right) \to \neg \forall y \left(R(x,y) \to \tau(P, y)\right) \\ & = \neg \forall y \left(R(x,y) \to \neg \forall x \left(R(y,x) \to \tau(\neg\Box\neg P, x)\right)\right) \to \neg \forall y \left(R(x,y) \to \neg P(y)\right) \\ & = \neg \forall y \left(R(x,y) \to \neg \forall x \left(R(y,x) \to \neg (\Box\neg P, x)\right)\right) \to \neg \forall y \left(R(x,y) \to \neg P(y)\right) \\ & = \neg \forall y \left(R(x,y) \to \neg \forall x \left(R(y,x) \to \neg \forall y \left(R(x,y) \to \tau(P, y)\right)\right)\right) \to \neg \forall y \left(R(x,y) \to \neg P(y)\right) \\ & = \neg \forall y \left(R(x,y) \to \neg \forall x \left(R(y,x) \to \neg \forall y \left(R(x,y) \to \tau(P,y)\right)\right)\right) \to \neg \forall y \left(R(x,y) \to \neg P(y)\right) \\ & = \neg \forall y \left(R(x,y) \to \neg \forall x \left(R(y,x) \to \neg \forall y \left(R(x,y) \to \neg \tau(P,y)\right)\right)\right) \to \neg \forall y \left(R(x,y) \to \neg P(y)\right) \\ & = \forall \psi \left(R(x,y) \to \neg \forall x \left(R(y,x) \to \neg \forall y \left(R(x,y) \to \neg P(y)\right)\right)\right) \to \neg \forall y \left(R(x,y) \to \neg P(y)\right) \\ & = \varphi \end{split}
```

Additionally, we encode the frame axiom in predicate logic:

 $\forall x \forall y (R(x, y) \to R(y, x)) \qquad \text{(symmetricity)}$

Then, we construct a complete tableau starting from the frame axiom and $\neg \forall x \varphi$.

```
1. \forall x \forall y (R(x, y) \rightarrow R(y, x))
2. \neg \forall x \left( \neg \forall y \left( R(x, y) \rightarrow \neg \forall x \left( R(y, x) \rightarrow \neg \forall y \left( R(x, y) \rightarrow \neg P(y) \right) \right) \right) \right) \rightarrow \neg \forall y \left( R(x, y) \rightarrow \neg P(y) \right) \right)
        \neg \left(\neg \forall y \left( R(c, y) \to \neg \forall x \left( R(y, x) \to \neg \forall y \left( R(x, y) \to \neg P(y) \right) \right) \right) \to \neg \forall y \left( R(c, y) \to \neg P(y) \right) \right) (2, x/c)
4. \neg \forall y \left( R(c, y) \rightarrow \neg \forall x \left( R(y, x) \rightarrow \neg \forall y \left( R(x, y) \rightarrow \neg P(y) \right) \right) \right)
                                                                                                                          (3)
        \neg \neg \forall y (R(c, y) \rightarrow \neg P(y))
5.
                                                                                                                            (3)
6. \neg (R(c,d) \rightarrow \neg \forall x (R(d,x) \rightarrow \neg \forall y (R(x,y) \rightarrow \neg P(y))))
                                                                                                                            (4, y/d)
7. \forall y (R(c, y) \rightarrow \neg P(y))
                                                                                                                            (5)
8. R(c, d)
                                                                                                                            (6)
9. \neg \neg \forall x (R(d, x) \rightarrow \neg \forall y (R(x, y) \rightarrow \neg P(y)))
                                                                                                                            (6)
10. \forall x (R(d, x) \rightarrow \neg \forall y (R(x, y) \rightarrow \neg P(y)))
                                                                                                                            (9)
11. R(d,c) \rightarrow \neg \forall y (R(c,y) \rightarrow \neg P(y))
                                                                                                                            (10, x/c)
                                                                      13. \neg \forall y (R(c, y) \rightarrow \neg P(y)) (11)
 12. \neg R(d,c)
                                                  (11)
12. \neg R(u,c) (11) (13. \neg \forall g(R(c,y) \rightarrow \neg P(g))

14. \forall g(R(c,y) \rightarrow R(y,c)) (1, x/c) (18. \neg (R(c,e) \rightarrow \neg P(e))
                                                                                                                           (13, y/e)
 15. R(c, d) \rightarrow R(d, c)
                                                 (14, y/d) 19. R(c, e)
                                                                                                                            (18)
16. \neg R(c, d) (15) 17. \dot{R}(d, c) (15)
                                                                      20. \neg \neg P(e)
                                                                                                                            (18)
                                                                      21. R(c, e) \rightarrow \neg P(e)
                              \otimes
                                                                                                                           (7, y/e)
                                                                      22. \neg R(c, e) (21) 23. \neg P(e) (21)
                                                                         \otimes
                                                                                                            \otimes
```

- 2. a) $\mathcal{M}, s_1 \Vdash K_1 P$ since $v(s_1, P) = v(s_2, P) =$ true, and $\mathcal{M}, s_1 \Vdash K_2 P$ and $\mathcal{M}, s_1 \Vdash K_3 P$ since $v(s_1, P) =$ true. Thus $\mathcal{M}, s_1 \Vdash EP$.
 - b) $\mathcal{M}, s_1 \Vdash K_2 EP$ and $\mathcal{M}, s_1 \Vdash K_3 EP$ since $\mathcal{M}, s_1 \Vdash EP$. Furthermore, $\mathcal{M}, s_2 \Vdash K_1 P$ since $v(s_1, P) = v(s_2, P) =$ true, $\mathcal{M}, s_2 \Vdash K_2 P$ since $v(s_2, P) = v(s_3, P) =$ true, and $\mathcal{M}, s_2 \Vdash K_3 P$ since $v(s_2, P) =$ true. Hence $\mathcal{M}, s_2 \Vdash EP$, and it follows that $\mathcal{M}, s_1 \Vdash K_1 EP$. Thus $\mathcal{M}, s_1 \Vdash EEP$. This result can also be obtained by noticing that P is true in all worlds that are reachable from s_1 in two steps.
 - c) $\mathcal{M}, s_1 \nvDash CP$ since s_4 is C-reachable from s_1 and $v(s_4, P) =$ false.
- 3. Recall that a model is universal of it is based on a universal frame. S5 denotes the set of all universal frames. Let φ be a formula that is not S5-valid, where Then there is a universal countermodel for $\mathcal{M} = \langle S, R, v \rangle$ having a world $s \in S$ for which $\mathcal{M}, s \nvDash \varphi$.

Let $F = \{ \Box \psi \mid \Box \psi \text{ is a subformula of } \varphi \text{ and } \mathcal{M}, s \Vdash \neg \Box \psi \}.$

Then for each formula $\Box \psi \in F$ there is a corresponding $s_{\psi} \in S$ such that $\langle s, s_{\psi} \rangle \in R$ and $\mathcal{M}, s_{\psi} \Vdash \neg \psi$.

Let $\mathcal{M}' = \langle S', R', v' \rangle$, where $S' = \{s\} \cup \{s_{\psi} \mid \Box \psi \in F\} \subseteq S, R' = S' \times S'$ and v'(s', P) = v(s', P) for all $s' \in S'$ and for all atomic formulas Poccurring in φ .

We will show by induction that for every $s' \in S'$ and for every subformula ψ of φ it holds that $\mathcal{M}, s' \Vdash \psi$ iff $\mathcal{M}', s' \Vdash \psi$.

The base case (for every atomic formula) is trivial. Furthermore, the induction step follows immediately for all subformulas of the form $\psi' \wedge \psi''$ and $\neg \psi$. Now consider a subformula of the form $\Box \psi$. Let $s' \in S'$.

If $\mathcal{M}, s' \Vdash \Box \psi$, then $\mathcal{M}, t \Vdash \psi$ for all $t \in S'$ due to the fact that \mathcal{M} is universal. By the induction hypothesis, $\mathcal{M}', t \Vdash \psi$ for all $t \in S'$. It follows that $\mathcal{M}', s' \Vdash \Box \psi$.

On the other hand, if $\mathcal{M}, s' \nvDash \Box \psi$, then $\mathcal{M}, t \Vdash \neg \Box \psi$ for all $t \in S'$ since \mathcal{M} is universal. Especially $\mathcal{M}, s \Vdash \neg \Box \psi$, and hence $\Box \psi \in F$. Now we know that there is a world $s_{\psi} \in S'$ such that $\langle s, s_{\psi} \rangle \in R$ and $\mathcal{M}, s_{\psi} \Vdash \neg \psi$, that is, $\mathcal{M}, s_{\psi} \nvDash \psi$. By the induction hypothesis it follows that $\mathcal{M}', s_{\psi} \nvDash \psi$, and thus $\mathcal{M}', s_{\psi} \Vdash \neg \psi$. Since \mathcal{M}' is universal, we have $\mathcal{M}', s' \nvDash \Box \psi$. Especially $s \in S'$ and $\mathcal{M}, s \nvDash \varphi$, and thus by the above it follows that $\mathcal{M}', s \nvDash \varphi$. Hence \mathcal{M}' is a countermodel for φ , as well. If φ is not **S5**-valid, there is a universal countermodel \mathcal{M} and a world s such that $\mathcal{M}, s \nvDash \varphi$. By our construction we obtain another universal countermodel \mathcal{M}' for φ having at most $|\operatorname{Sub}(\varphi)|$ worlds.

T-79.5101 Advanced Course in Computational Logic Exercise Session 9 Solutions Spring 2008

1. Basic operator:

$$M, s \models \mathbf{AXP}$$
 iff $\mathcal{M}, t \models P$ for all t such that sRt

Replace P by $\neg P$:

 $\mathcal{M}, s \models \mathbf{A}\mathbf{X} \neg P \text{ iff } \mathcal{M}, t \models \neg P \text{ for all } t \text{ such that } sRt$ $\mathcal{M}, s \not\models \mathbf{A}\mathbf{X} \neg P \text{ iff } \mathcal{M}, t \not\models \neg P \text{ for some } t \text{ such that } sRt$ $\mathcal{M}, s \models \neg \mathbf{A}\mathbf{X} \neg P \text{ iff } \mathcal{M}, t \not\models \neg P \text{ for some } t \text{ such that } sRt$ $\mathcal{M}, s \models \mathbf{E}\mathbf{X}P \text{ iff } \mathcal{M}, t \models P \text{ for some } t \text{ such that } sRt$

Basic operator:

 $\mathcal{M}, s \models \mathbf{A}(P\mathbf{U}Q)$ iff for all full paths (s_0, s_1, \dots) with $s_0 = s$ in \mathcal{M} , there is some *i* such that $\mathcal{M}, s_i \models Q$, and for all j < i it holds that $\mathcal{M}, s_i \models P$.

Make the substitutions $P \to \top, Q \to P$:

 $\mathcal{M}, s \models \mathbf{A}(\top \mathbf{U}P) \text{ iff for all full paths } (s_0, s_1, \dots) \text{ with } s_0 = s$ in \mathcal{M} there is some *i* such that $\mathcal{M}, s_i \models P$ and for all j < i it holds that $\mathcal{M}, s_j \models \top$. $\mathcal{M}, s \models \mathbf{AF}P \text{ iff for all full paths } (s_0, s_1, \dots) \text{ with } s_0 = s$ in \mathcal{M} there is some *i* such that $\mathcal{M}, s_i \models P$.

Basic operator:

 $\mathcal{M}, s \models \mathbf{E}(P\mathbf{U}Q)$ iff there is a full path (s_0, s_1, \dots) with $s_0 = s$ in \mathcal{M} and there is some *i* such that $\mathcal{M}, s_i \models Q$ and for all j < i it holds that $\mathcal{M}, s_i \models P$. Make the substitutions $P \to \top, Q \to P$:

 $\mathcal{M}, s \models \mathbf{E}(\top \mathbf{U}P) \text{ iff there is a full path } (s_0, s_1, \dots) \text{ with } s_0 = s$ in \mathcal{M} and there is some i such that $\mathcal{M}, s_i \models P$ and for all j < i it holds that $\mathcal{M}, s_j \models \top$. $\mathcal{M}, s \models \mathbf{E}\mathbf{F}P \text{ iff there is a full path } (s_0, s_1, \dots) \text{ with } s_0 = s$ in \mathcal{M} and there is some i such that $\mathcal{M}, s_i \models P$.

 $\mathcal{M}, s \models \mathbf{EF}P \text{ iff there is a full path } (s_0, s_1, \dots) \text{ with } s_0 = s$ in \mathcal{M} and there is some i such that $\mathcal{M}, s_i \models P$. $\mathcal{M}, s \models \mathbf{EF}\neg P \text{ iff there is a full path } (s_0, s_1, \dots) \text{ with } s_0 = s$ in \mathcal{M} and there is some i such that $\mathcal{M}, s_i \models \neg P$. $\mathcal{M}, s \not\models \mathbf{EF}\neg P \text{ iff for all full paths } (s_0, s_1, \dots) \text{ with } s_0 = s$ in \mathcal{M} and for all i it holds that $\mathcal{M}, s_i \not\models \neg P$. $\mathcal{M}, s \models \neg \mathbf{EF}\neg P \text{ iff for all full paths } (s_0, s_1, \dots) \text{ with } s_0 = s$ in \mathcal{M} and for all i it holds that $\mathcal{M}, s_i \not\models \neg P$. $\mathcal{M}, s \models \neg \mathbf{EF}\neg P \text{ iff for all full paths } (s_0, s_1, \dots) \text{ with } s_0 = s$ in \mathcal{M} and for all i it holds that $\mathcal{M}, s_i \not\models \neg P$. $\mathcal{M}, s \models \mathbf{AG}P \text{ iff for all full paths } (s_0, s_1, \dots) \text{ with } s_0 = s$ in \mathcal{M} and for all i it holds that $\mathcal{M}, s_i \models P$.

- $\mathcal{M}, s \models \mathbf{AFP}$ iff for all full paths (s_0, s_1, \dots) with $s_0 = s$ in \mathcal{M} there is some *i* such that $\mathcal{M}, s_i \models P$.
- $\mathcal{M}, s \models \mathbf{AF} \neg P$ iff for all full paths (s_0, s_1, \dots) with $s_0 = s$ in \mathcal{M} there is some *i* such that $\mathcal{M}, s_i \models \neg P$.
- $\mathcal{M}, s \not\models \mathbf{AF} \neg P$ iff there is a full path (s_0, s_1, \dots) with $s_0 = s$ in \mathcal{M} such that for all *i* it holds that $\mathcal{M}, s_i \not\models \neg P$.
- $\mathcal{M}, s \models \neg \mathbf{AF} \neg P$ iff there is a full path (s_0, s_1, \dots) with $s_0 = s$ in \mathcal{M} such that for all *i* it holds that $\mathcal{M}, s_i \not\models \neg P$.
- $\mathcal{M}, s \models \mathbf{EGP}$ iff there is a full path (s_0, s_1, \dots) with $s_0 = s$ in \mathcal{M} such that for all *i* it holds that $\mathcal{M}, s_i \models P$.

2.

 $\mathcal{M}, x \models P\mathbf{U}Q \text{ iff there is some } i \text{ such that } \mathcal{M}, x^i \models Q$ and for all j < i it holds that $\mathcal{M}, x^j \models P$. $\mathcal{M}, x \models \top \mathbf{U}P \text{ iff there is some } i \text{ such that } \mathcal{M}, x^i \models P$ and for all j < i it holds that $\mathcal{M}, x^j \models \top$ $\mathcal{M}, x \models \mathbf{F}P \text{ iff there is some } i \text{ such that } \mathcal{M}, x^i \models P.$

 $\mathcal{M}, x \models \mathbf{F}P \text{ iff there is some } i \text{ such that } \mathcal{M}, x^i \models P.$ $\mathcal{M}, x \models \mathbf{F}\neg P \text{ iff there is some } i \text{ such that } \mathcal{M}, x^i \models \neg P.$ $\mathcal{M}, x \models \mathbf{F}\neg P \text{ iff for all } i \text{ it holds that } \mathcal{M}, x^i \not\models \neg P.$ $\mathcal{M}, x \models \neg \mathbf{F}\neg P \text{ iff for all } i \text{ it holds that } \mathcal{M}, x^i \not\models \neg P.$ $\mathcal{M}, x \models \mathbf{G}P \text{ iff for all } i \text{ it holds that } \mathcal{M}, x^i \models P.$

 $\mathcal{M}, x \models P\mathbf{U}Q \text{ iff there is some } i \text{ such that } \mathcal{M}, x^i \models Q$ and for all j < i it holds that $\mathcal{M}, x^j \models P$. $\mathcal{M}, x \models (\neg P)\mathbf{U}(\neg Q) \text{ iff there is some } i \text{ such that } \mathcal{M}, x^i \models \neg Q$ and for all j < i it holds that $\mathcal{M}, x^j \models \neg P$. $\mathcal{M}, x \not\models (\neg P)\mathbf{U}(\neg Q) \text{ iff for all } i:$ $\mathcal{M}, x^i \not\models \neg Q \text{ or there is some } j < i \text{ such that } \mathcal{M}, x^j \not\models \neg P.$

 $\mathcal{M}, x \models \neg ((\neg P)\mathbf{U}(\neg Q))$ iff for all i:

if $\mathcal{M}, x^i \models \neg Q$, then there is some j < i such that $\mathcal{M}, x^j \not\models \neg P$. $\mathcal{M}, x \models P\mathbf{R}Q$ iff for all i:

if $\mathcal{M}, x^i \not\models Q$, then there is some j < i such that $\mathcal{M}, x^j \models P$.

3. For example, define

$$\begin{array}{ll} v(s_0,P) = {\rm true} & v(s_0,Q) = {\rm false} \\ v(s_1,P) = {\rm false} & v(s_1,Q) = {\rm true} \\ v(s_2,P) = {\rm false} & v(s_2,Q) = {\rm false}. \end{array}$$

Then we have the model

$$s_0 \xrightarrow{s_0} s_1 \xrightarrow{s_2} s_2$$

$$P, \neg Q \quad \neg P, Q \quad \neg P, \neg Q$$

Now for the full path $x = (s_0, s_1, s_2, s_2, s_2, \ldots)$ it holds that

 $\mathcal{M}, x \models P \mathbf{U} Q$, since $\mathcal{M}, x^1 \models Q$ and $\mathcal{M}, x^j \models P$ holds for all j < 1,

but $\mathcal{M}, x \not\models Q\mathbf{R}P$ since $\mathcal{M}, x^1 \not\models P$ and there is no j < 1 for which $\mathcal{M}, x^j \models Q$.

T-79.5101 Advanced Course in Computational Logic Exercise Session 10 Solutions

1.

a)
$$P \wedge \mathbf{EF}Q$$

b) $\mathbf{EF}(P \wedge \mathbf{AXAG} \neg P)$
c) $\mathbf{AG}(P \rightarrow \mathbf{AX}(P \rightarrow \mathbf{EF}Q))$
d) $(P \rightarrow \mathbf{A}(P\mathbf{U}Q)) \wedge (\neg P \rightarrow \mathbf{AX}(P \lor \mathbf{AX}P))$
e) $\mathbf{E}(P\mathbf{UAG}((Q \rightarrow \mathbf{AX} \neg Q) \land (\neg Q \rightarrow \mathbf{AX}Q))))$
f) $\mathbf{AG}(P \rightarrow \mathbf{AG}(\neg Q \land \neg R)) \land \mathbf{AG}((Q \lor R) \rightarrow \mathbf{AG} \neg P)$

2. a) $\mathcal{M} = \langle S, R, v \rangle$, where $S = \{s, t\}$, $R = \{\langle s, t \rangle, \langle t, t \rangle\}$, v(s, P) =true and v(t, P) =false.

 $s \xrightarrow{t} t$ $P \xrightarrow{\neg P}$

 $\mathcal{M}, s \models \mathbf{AFP}$ holds since (s, t, t, t, ...) is the only full path beginning from s and on this path there is a state s such that $\mathcal{M}, s \models P$ holds. Thus \mathbf{AFP} is satisfiable.

For **GF***P* to be satisfiable in the model \mathcal{M} there should be a full path x in \mathcal{M} for which $\mathcal{M}, x \models \mathbf{GF}P$. Then $\mathcal{M}, x^i \models \mathbf{F}P$ should hold for all $i \ge 0$, that is, for all $i \ge 0$ there should be a $j \ge i$ such that $\mathcal{M}, x^j \models P$. In other words, P should be true on infinitely many (infinite) suffixes of the path x However, there are no such paths since the only full paths in \mathcal{M} are (s, t, t, t, ...) and (t, t, t, ...), and P is true only on finitely many suffixes of these paths. Thus the formula **GF***P* is not satisfiable in the model \mathcal{M} .

b) $\mathcal{M} = \langle S, R, v \rangle$, where $S = \{s, t\}, R = \{\langle s, s \rangle, \langle s, t \rangle, \langle t, t \rangle\}, v(s, P) = \text{false and } v(t, P) = \text{true.}$

$$\begin{array}{c} \bigcirc \\ s \\ \neg P \\ P \end{array} \begin{array}{c} \bigcirc \\ P \\ P \end{array}$$

 $\mathcal{M}, s \models \mathbf{EFAGP}$ and $\mathcal{M}, t \models \mathbf{EFAGP}$ hold since the model includes the full paths (s, t, t, t, ...) and (t, t, t, ...) which go though the state t, and clearly $\mathcal{M}, t \models \mathbf{AGP}$. Thus the formula \mathbf{EFAGP} is valid in the model.

However, **FG***P* is not valid in the model: the full path (s, s, s, ...) has no infinite suffix x such that $\mathcal{M}, x^i \models P$ holds for all i (since v(s, P) = false), and hence $\mathcal{M}, (s, s, s, ...) \not\models \mathbf{FG}P$.

c) $\mathcal{M} = \langle S, R, v \rangle$, where $S = \{s, t\}$, $R = \{\langle s, s \rangle, \langle s, t \rangle, \langle t, s \rangle, \langle t, t \rangle\}$, v(s, P) =true and v(t, P) =false.

The formula **FX***P* is satisfiable since the model has (for example) the full path x = (t, s, s, s, ...) for which $\mathcal{M}, x \models \mathbf{X}P$ (since v(s, P) = true), and hence $\mathcal{M}, x \models \mathbf{FX}P$.

However, the formula **EFAX***P* is not satisfiable in any state of the model: otherwise, there should be a full path that begins from *s* or *t* which goes through states *s* and *t* which would also go though a state which satisfies **AX***P*. In other words, either $\mathcal{M}, s \models \mathbf{AX}P$ or $\mathcal{M}, t \models \mathbf{AX}P$ should holds; however, this is not the case since both *s* and *t* have a successor (*t*) in *R* for which $\mathcal{M}, t \nvDash P$.

3. a)
$$\mathcal{M} = \langle S, R, v \rangle$$
, where $S = \{s, t\}, R = \{\langle s, t \rangle, \langle t, s \rangle\}, v(s, P) = v(s, V) = \text{false and } v(t, P) = v(t, V) = \text{true.}$

Here we can separately look at the paths $x_1 = (s, t, s, t, ...)$ and $x_2 = (t, s, t, s, ...)$.

- $\mathcal{M}, s \models \mathbf{E}(\neg V\mathbf{U}P)$ holds since $\mathcal{M}, x_1^1 \models P$ (because v(t, P) = true), and for all i < 1 we have $\mathcal{M}, x_1^i \models \neg V$. Furthermore, $\mathcal{M}, t \models \mathbf{E}(\neg V\mathbf{U}P)$ holds since the full path x_2 starts from t and $\mathcal{M}, x_2^0 \models P$.
- Since $\mathcal{M}, x_1^0 \models \neg P$, we have $\mathcal{M}, s \models \mathbf{E}(V\mathbf{U}\neg P)$. Similarly, $\mathcal{M}, t \models \mathbf{E}(V\mathbf{U}\neg P)$ holds since $\mathcal{M}, x_2^1 \models \neg P$ and $\mathcal{M}, x_2^i \models V$ for all i < 1.
- $\mathcal{M}, s \models \mathbf{AF}(V \to \mathbf{AX} \neg V) \land \mathbf{EF}V$ since x_1 is the only path that starts from s and $\mathcal{M}, x_1 \models \mathbf{F}(V \to \mathbf{AX} \neg V)$ (because, e.g., $\mathcal{M}, x_1^0 \models V \to \mathbf{AX} \neg V$ since v(s, V) = false) and, additionally, $\mathcal{M}, x_1 \models \mathbf{F}V$ since the path x_1 goes through the state t and v(t, V) = true.

Similarly, we have $\mathcal{M}, t \models \mathbf{AF}(V \to \mathbf{AX}\neg V) \land \mathbf{EF}V$ since x_2 is the only full path that starts from t and $\mathcal{M}, x_2^0 \models \mathbf{AX}\neg V$ holds since $\mathcal{M}, t \models \mathbf{AX}\neg V$ (the only successor of t is s and v(s, V) = false). Furthermore, $\mathcal{M}, t \models \mathbf{EF}V$ holds since for the full path x_2 that starts from t we have $\mathcal{M}, x_2^0 \models V$ (because v(t, V) = true).

b) $\mathcal{M} = \langle S, R, v \rangle$, where $S = \{s, t\}, R = \{\langle s, t \rangle, \langle t, s \rangle\}, v(t, P) = v(s, V) = \text{false and } v(s, P) = v(t, V) = \text{true.}$

$$s \underbrace{\longrightarrow}_{P} t$$
$$\neg P$$
$$\neg V$$
$$V$$

Again, we can separate the paths $x_1 = (s, t, s, t, ...)$ and $x_2 = (t, s, t, s, ...)$.

• $\mathcal{M}, s \models \mathbf{AG}(P \to \mathbf{F}V)$ holds since x_1 is the only full path that starts from s and $\mathcal{M}, x_1 \models \mathbf{G}(P \to \mathbf{F}V)$. This is because $\mathcal{M}, x_1^{2k} \models \mathbf{F}V$ (since $\mathcal{M}, x_1^{2k+1} \models V$) holds for all $k \ge 0$ and, additionally, $\mathcal{M}, x_1^{2k+1} \not\models P$ holds for all $k \ge 0$. Similarly, $\mathcal{M}, t \models \mathbf{AG}(P \to \mathbf{F}V)$ holds since x_2 is the only full

path that starts from t and $\mathcal{M}, x_2 \models \mathbf{G}(P \to \mathbf{F}V)$ because $\mathcal{M}, x_2^{2k} \not\models P$ and $\mathcal{M}, x_2^{2k+1} \models \mathbf{F}V$ holds for all $k \ge 0$.

• $\mathcal{M}, s \models \mathbf{AF}(P \land \mathbf{F}(\neg P \land \mathbf{X}P))$ holds since x_1 is the only full path that starts from s and $\mathcal{M}, x_1^0 \models P \land \mathbf{F}(\neg P \land \mathbf{X}P)$ holds because $\mathcal{M}, x_1^0 \models P(v(s, P) = \text{true})$ and, additionally, $\mathcal{M}, x_1^0 \models \mathbf{F}(\neg P \land \mathbf{X}P)$ holds because $\mathcal{M}, x_1^1 \models \neg P \land \mathbf{X}P$ (since $v(t, P) = \text{false } \mathcal{M}, (x_1^1)^1 \models P)$. Similarly, $\mathcal{M}, t \models \mathbf{AF}(P \land \mathbf{F}(\neg P \land \mathbf{X}P))$ holds since x_2 is the only full path that starts from t and because $x_2^1 = x_1 = x_1^0$

and $\mathcal{M}, x_1^0 \models P \land \mathbf{F}(\neg P \land \mathbf{X}P)$, and (cf. above) $\mathcal{M}, x_2 \models \mathbf{F}(P \land \mathbf{F}(\neg P \land \mathbf{X}P))$. • $\mathcal{M}, s \models \mathbf{A}(\neg V\mathbf{U}V)$ holds since x_1 is the only full path that

• $\mathcal{M}, s \models \mathcal{A}(\neg V \cup V)$ holds since x_1 is the only full path that starts from s and $\mathcal{M}, x_1 \models \neg V \cup V$ because $\mathcal{M}, x_1^1 \models V$ (v(t, V) = true) and $\mathcal{M}, x_1^i \models \neg V$ for all i < 1 (v(s, V) = false).

Since v(t, V) = true, $\mathcal{M}, x \models \neg V \mathbf{U} V$ holds for all full paths x that start from t. Thus $\mathcal{M}, t \models \mathbf{A}(\neg V \mathbf{U} V)$ holds.