T－79．5101

Solutions

Advanced Course in Computational Logic

Exercise Session 8

1． KB is the set of symmetric frames．Let＇s translate the formula in the exercise into predicate logic：

```
\tau(\negローロ\negロ\negP->->\square\squareP,x
= \tau(\neg\square\square\square\neg\square\negP,x)->\tau(\neg\square\negP,
= \neg\tau(\square\neg\square\neg\square\negP,x)->\neg\tau(\square\negPP
= }\forally(R(x,y)->\tau(\neg\square\neg\square\negP,y))->\neg\forally(R(x,y)->\tau(\negP,y)
= }\forall\forally(R(x,y)->\neg\tau(\square\neg\square\negP,y))->\neg\forally(R(x,y)->\neg\tau(P,y
= \neg\forally(R(x,y)->\neg\forallx(R(y,x)->\tau(\neg\square\negP,x)))->\neg\forally(R(x,y)->\negP(y)
= \neg\forally(R(x,y)->\neg\forallx(R(y,x)->\neg\tau(\square\negP,x)))->\neg\forally(R(x,y)->\negP(y))
= \neg\forally(R(x,y)->\neg\forallx(R(y,x)->\neg\forally(R(x,y)->\tau(\negP,y))))->\neg\forally(R(x,y)->\negP(y))
= \neg\forally(R(x,y)->\neg\forallx(R(y,x)->\neg\forally(R(x,y)->\neg\tau(P,y))))->\neg\forally(R(x,y)->\negP(y))
```



```
=\varphi
```

Additionally，we encode the frame axiom in predicate logic

$$
\forall x \forall y(R(x, y) \rightarrow R(y, x)) \quad \text { (symmetricity) }
$$

Then，we construct a complete tableau starting from the frame axiom and $\neg \forall x \varphi$ ．

1．$\forall x \forall y(R(x, y) \rightarrow R(y, x))$
2．$\neg \forall x(\neg \forall y(R(x, y) \rightarrow \neg \forall x(R(y, x) \rightarrow \neg \forall y(R(x, y) \rightarrow \neg P(y)))) \rightarrow \neg \forall y(R(x, y) \rightarrow \neg P(y)))$
3．$\neg(\neg \forall y(R(c, y) \rightarrow \neg \forall x(R(y, x) \rightarrow \neg \forall y(R(x, y) \rightarrow \neg P(y)))) \rightarrow \neg \forall y(R(c, y) \rightarrow \neg P(y)))(2, x / c$
4．$\neg \forall y(R(c, y) \rightarrow \neg \forall x(R(y, x) \rightarrow \neg \forall y(R(x, y) \rightarrow \neg P(y)))) \quad$（3）
．$\neg \neg \forall y(R(c, y) \rightarrow \neg P(y)) \longrightarrow(3)$
6．$\neg(R(c, d) \rightarrow \neg \forall x(R(d, x) \rightarrow \neg \forall y(R(x, y) \rightarrow \neg P(y))))$
7．$\quad \forall y(R(c, y) \rightarrow \neg P(y))$
8．$\quad R(c, d)$
9．$\neg \neg \forall x(R(d, x) \rightarrow \neg \forall y(R(x, y) \rightarrow \neg P(y)))$
（4，y / d ）
$\neg \forall x(R(d, x) \rightarrow \forall \forall y(R(x, y) \rightarrow \neg P(y)))$
$\forall x(R(d, x) \rightarrow \forall \forall y(R(x, y) \rightarrow \neg P(y)))$
11．$R(d, c) \rightarrow \neg \forall(R(c, y) \rightarrow \neg P(y)) \quad$（9）
11．
（10，
12

15．$R(c, d) \rightarrow R(d, c)$
16．$-R(c, d)(15)(17 \cdot R(d, c)(15)$
Spring 2008

$$
\begin{aligned}
& \otimes \otimes\left|\begin{array}{l|l}
\otimes
\end{array}\right| \begin{array}{l}
\text { 21. } R(c, e) \rightarrow \neg P(e) \\
\text { 22. } \neg R(c, e)(21) \mid 23 . \neg P(e)
\end{array}
\end{aligned}
$$

2．a） $\mathcal{M}, s_{1} \Vdash K_{1} P$ since $v\left(s_{1}, P\right)=v\left(s_{2}, P\right)=$ true，and $\mathcal{M}, s_{1} \Vdash K_{2} P$ and $\mathcal{M}, s_{1} \Vdash K_{3} P$ since $v\left(s_{1}, P\right)=$ true． Thus $\mathcal{M}, s_{1} \Vdash E P$ ．
b） $\mathcal{M}, s_{1} \Vdash K_{2} E P$ and $\mathcal{M}, s_{1} \Vdash K_{3} E P$ since $\mathcal{M}, s_{1} \Vdash E P$ ． Furthermore， $\mathcal{M}, s_{2} \Vdash K_{1} P$ since $v\left(s_{1}, P\right)=v\left(s_{2}, P\right)=$ true， $\mathcal{M}, s_{2} \Vdash K_{2} P$ since $v\left(s_{2}, P\right)=v\left(s_{3}, P\right)=$ true，and $\mathcal{M}, s_{2} \Vdash K_{3} P$ since $v\left(s_{2}, P\right)=$ true．Hence $\mathcal{M}, s_{2} \Vdash E P$ ，and it follows that $\mathcal{M}, s_{1} \Vdash K_{1} E P$ ．Thus $\mathcal{M}, s_{1} \Vdash E E P$
This result can also be obtained by noticing that P is true in all worlds that are reachable from s_{1} in two steps．
c） $\mathcal{M}, s_{1} \nVdash C P$ since s_{4} is C－reachable from s_{1} and $v\left(s_{4}, P\right)=$ false．
3．Recall that a model is universal of it is based on a universal frame．S5 denotes the set of all universal frames．Let φ be a formula that is not S5－ valid，where Then there is a universal countermodel for $\mathcal{M}=\langle S, R, v\rangle$ having a world $s \in S$ for which $\mathcal{M}, s \nVdash \varphi$ ．

Let $F=\{\square \psi \mid \square \psi$ is a subformula of φ and $\mathcal{M}, s \Vdash \neg \square \psi\}$ ．
Then for each formula $\square \psi \in F$ there is a corresponding $s_{\psi} \in S$ such that $\left\langle s, s_{\psi}\right\rangle \in R$ and $\mathcal{M}, s_{\psi} \Vdash \neg \psi$ ．
Let $\mathcal{M}^{\prime}=\left\langle S^{\prime}, R^{\prime}, v^{\prime}\right\rangle$ ，where $S^{\prime}=\{s\} \cup\left\{s_{\psi} \mid \square \psi \in F\right\} \subseteq S, R^{\prime}=S^{\prime} \times S^{\prime}$ and $v^{\prime}\left(s^{\prime}, P\right)=v\left(s^{\prime}, P\right)$ for all $s^{\prime} \in S^{\prime}$ and for all atomic formulas P occurring in φ ．
We will show by induction that for every $s^{\prime} \in S^{\prime}$ and for every subfor－ mula ψ of φ it holds that $\mathcal{M}, s^{\prime} \Vdash \psi \quad$ iff $\quad \mathcal{M}^{\prime}, s^{\prime} \Vdash \psi$ ．
The base case（for every atomic formula）is trivial．Furthermore，the induction step follows immediately for all subformulas of the form $\psi^{\prime} \wedge$ $\psi^{\prime \prime}$ and $\neg \psi$ ．Now consider a subformula of the form $\square \psi$ ．Let $s^{\prime} \in S^{\prime}$ ．

If $\mathcal{M}, s^{\prime} \Vdash \square \psi$ ，then $\mathcal{M}, t \Vdash \psi$ for all $t \in S^{\prime}$ due to the fact that \mathcal{M} is universal．By the induction hypothesis， $\mathcal{M}^{\prime}, t \Vdash \psi$ for all $t \in S^{\prime}$ ．It follows that $\mathcal{M}^{\prime}, s^{\prime} \Vdash \square \psi$ ，

On the other hand，if $\mathcal{M}, s^{\prime} \nVdash \square \psi$ ，then $\mathcal{M}, t \Vdash \neg \square \psi$ for all $t \in S^{\prime}$ since \mathcal{M} is universal．Especially $\mathcal{M}, s \Vdash \neg \square \psi$ ，and hence $\square \psi \in F$ ． Now we know that there is a world $s_{\psi} \in S^{\prime}$ such that $\left\langle s, s_{\psi}\right\rangle \in R$ and $\mathcal{M}, s_{\psi} \Vdash \neg \psi$ ，that is， $\mathcal{M}, s_{\psi} \nVdash \psi$ ．By the induction hypothesis it follows that $\mathcal{M}^{\prime}, s_{\psi} \nVdash \psi$ ，and thus $\mathcal{M}^{\prime}, s_{\psi} \Vdash \neg \psi$ ．Since \mathcal{M}^{\prime} is universal，we have $\mathcal{M}^{\prime}, s^{\prime} \nVdash \square \psi$ ．Especially $s \in S^{\prime}$ and $\mathcal{M}, s \nVdash \varphi$ ，and thus by the above it follows that $\mathcal{M}^{\prime}, s \nVdash \varphi$ ．Hence \mathcal{M}^{\prime} is a countermodel for φ ，as well．

If φ is not $\mathbf{S 5}$-valid, there is a universal countermodel \mathcal{M} and a world s such that $\mathcal{M}, s \nVdash \varphi$. By our construction we obtain another universal countermodel \mathcal{M}^{\prime} for φ having at most $|\operatorname{Sub}(\varphi)|$ worlds.

T-79.5101
Advanced Course in Computational Logic
Exercise Session 9
Solutions

1. Basic operator:
$M, s \models \mathbf{A X} P$ iff $\mathcal{M}, t \models P$ for all t such that $s R t$

Replace P by $\neg P$:
$\mathcal{M}, s \models \mathbf{A X} \neg P$ iff $\mathcal{M}, t \models \neg P$ for all t such that $s R t$
$\mathcal{M}, s \not \models \mathbf{A X} \neg P$ iff $\mathcal{M}, t \not \models \neg P$ for some t such that $s R t$
$\mathcal{M}, s \models \neg \mathbf{A X} \neg P$ iff $\mathcal{M}, t \not \models \neg P$ for some t such that $s R t$
$\mathcal{M}, s \models \mathbf{E X} P$ iff $\mathcal{M}, t \models P$ for some t such that $s R t$

Basic operator:
$\mathcal{M}, s \models \mathbf{A}(P \mathbf{U} Q)$ iff for all full paths $\left(s_{0}, s_{1}, \ldots\right)$ with $s_{0}=s$ in \mathcal{M}, there is some i such that $\mathcal{M}, s_{i} \models Q$, and for all $j<i$ it holds that $\mathcal{M}, s_{j} \models P$.

Make the substitutions $P \rightarrow \top, Q \rightarrow P$:
$\mathcal{M}, s \models \mathbf{A}(T \mathbf{U} P)$ iff for all full paths $\left(s_{0}, s_{1}, \ldots\right)$ with $s_{0}=s$ in \mathcal{M} there is some i such that $\mathcal{M}, s_{i} \models P$ and for all $j<i$ it holds that $\mathcal{M}, s_{j} \models \mathrm{~T}$.
$\mathcal{M}, s \models \mathbf{A F} P$ iff for all full paths $\left(s_{0}, s_{1}, \ldots\right)$ with $s_{0}=s$ in \mathcal{M} there is some i such that $\mathcal{M}, s_{i} \models P$.

Basic operator:
$\mathcal{M}, s \models \mathbf{E}(P \mathbf{U} Q)$ iff there is a full path $\left(s_{0}, s_{1}, \ldots\right)$ with $s_{0}=s$ in \mathcal{M} and there is some i such that $\mathcal{M}, s_{i} \models Q$ and for all $j<i$ it holds that $\mathcal{M}, s_{j} \models P$.
$\mathcal{M}, s \models \mathbf{E}(\top \mathbf{U} P)$ iff there is a full path $\left(s_{0}, s_{1}, \ldots\right)$ with $s_{0}=s$ in \mathcal{M} and there is some i such that $\mathcal{M}, s_{i} \models P$ and for all $j<i$ it holds that $\mathcal{M}, s_{j} \models \mathrm{~T}$.
$\mathcal{M}, s \models \mathbf{E F} P$ iff there is a full path $\left(s_{0}, s_{1}, \ldots\right)$ with $s_{0}=s$ in \mathcal{M} and there is some i such that $\mathcal{M}, s_{i} \models P$.
$\mathcal{M}, s \models \mathbf{E F} P$ iff there is a full path $\left(s_{0}, s_{1}, \ldots\right)$ with $s_{0}=s$ in \mathcal{M} and there is some i such that $\mathcal{M}, s_{i} \models P$.
$\mathcal{M}, s \models \mathbf{E F} \neg P$ iff there is a full path $\left(s_{0}, s_{1}, \ldots\right)$ with $s_{0}=s$ in \mathcal{M} and there is some i such that $\mathcal{M}, s_{i} \models \neg P$.
$\mathcal{M}, s \neq \mathbf{E F} \neg P$ iff for all full paths $\left(s_{0}, s_{1}, \ldots\right)$ with $s_{0}=s$ in \mathcal{M} and for all i it holds that $\mathcal{M}, s_{i} \not \vDash \neg P$.
$\mathcal{M}, s \models \neg \mathbf{E F} \neg P$ iff for all full paths $\left(s_{0}, s_{1}, \ldots\right)$ with $s_{0}=s$ in \mathcal{M} and for all i it holds that $\mathcal{M}, s_{i} \not \models \neg P$.
$\mathcal{M}, s \models$ AG P iff for all full paths $\left(s_{0}, s_{1}, \ldots\right)$ with $s_{0}=s$ in \mathcal{M} and for all i it holds that $\mathcal{M}, s_{i} \models P$.
$\mathcal{M}, s \models \mathbf{A F} P$ iff for all full paths $\left(s_{0}, s_{1}, \ldots\right)$ with $s_{0}=s$ in \mathcal{M} there is some i such that $\mathcal{M}, s_{i} \models P$.
$\mathcal{M}, s \models \mathbf{A F} \neg P$ iff for all full paths $\left(s_{0}, s_{1}, \ldots\right)$ with $s_{0}=s$ in \mathcal{M} there is some i such that $\mathcal{M}, s_{i} \models \neg P$.
$\mathcal{M}, s \not \vDash \mathbf{A F} \neg P$ iff there is a full path $\left(s_{0}, s_{1}, \ldots\right)$ with $s_{0}=s$ in \mathcal{M} such that for all i it holds that $\mathcal{M}, s_{i} \not \models \neg P$.
$\mathcal{M}, s \models \neg \mathbf{A F} \neg P$ iff there is a full path $\left(s_{0}, s_{1}, \ldots\right)$ with $s_{0}=s$ in \mathcal{M} such that for all i it holds that $\mathcal{M}, s_{i} \not \models \neg P$.
$\mathcal{M}, s \models \mathbf{E G} P$ iff there is a full path $\left(s_{0}, s_{1}, \ldots\right)$ with $s_{0}=s$ in \mathcal{M} such that for all i it holds that $\mathcal{M}, s_{i} \models P$.
$\mathcal{M}, x \models P \mathbf{U} Q$ iff there is some i such that $\mathcal{M}, x^{i} \models Q$ and for all $j<i$ it holds that $\mathcal{M}, x^{j} \models P$.
$\mathcal{M}, x \models \top \mathbf{U} P$ iff there is some i such that $\mathcal{M}, x^{i} \models P$ and for all $j<i$ it holds that $\mathcal{M}, x^{j} \models \top$
$\mathcal{M}, x \models \mathbf{F} P$ iff there is some i such that $\mathcal{M}, x^{i} \models P$.
$\mathcal{M}, x \models \mathbf{F} P$ iff there is some i such that $\mathcal{M}, x^{i} \models P$.
$\mathcal{M}, x \models \mathbf{F} \neg P$ iff there is some i such that $\mathcal{M}, x^{i} \models \neg P$.
$\mathcal{M}, x \not \vDash \mathbf{F} \neg P$ iff for all i it holds that $\mathcal{M}, x^{i} \not \models \neg P$.
$\mathcal{M}, x \models \neg \mathbf{F} \neg P$ iff for all i it holds that $\mathcal{M}, x^{i} \not \models \neg P$.
$\mathcal{M}, x \models \mathbf{G} P$ iff for all i it holds that $\mathcal{M}, x^{i} \models P$.
$\mathcal{M}, x \models P \mathbf{U} Q$ iff there is some i such that $\mathcal{M}, x^{i} \models Q$ and for all $j<i$ it holds that $\mathcal{M}, x^{j} \models P$.
$\mathcal{M}, x \models(\neg P) \mathbf{U}(\neg Q)$ iff there is some i such that $\mathcal{M}, x^{i} \models \neg Q$ and for all $j<i$ it holds that $\mathcal{M}, x^{j} \models \neg P$.
$\mathcal{M}, x \not \vDash(\neg P) \mathbf{U}(\neg Q)$ iff for all i :
$\mathcal{M}, x^{i} \not \vDash \neg Q$ or there is some $j<i$ such that $\mathcal{M}, x^{j} \not \models \neg P$.
$\mathcal{M}, x \models \neg((\neg P) \mathbf{U}(\neg Q))$ iff for all i :
if $\mathcal{M}, x^{i} \models \neg Q$, then there is some $j<i$ such that $\mathcal{M}, x^{j} \not \models \neg P$. $\mathcal{M}, x \models P \mathbf{R} Q$ iff for all i :
if $\mathcal{M}, x^{i} \not \models Q$, then there is some $j<i$ such that $\mathcal{M}, x^{j} \models P$.
3. For example, define

$$
\begin{array}{ll}
v\left(s_{0}, P\right)=\text { true } & v\left(s_{0}, Q\right)=\text { false } \\
v\left(s_{1}, P\right)=\text { false } & v\left(s_{1}, Q\right)=\text { true } \\
v\left(s_{2}, P\right)=\text { false } & v\left(s_{2}, Q\right)=\text { false }
\end{array}
$$

Then we have the model

Now for the full path $x=\left(s_{0}, s_{1}, s_{2}, s_{2}, s_{2}, \ldots\right)$ it holds that
$\mathcal{M}, x \models P \mathbf{U} Q$, since $\mathcal{M}, x^{1} \models Q$ and $\mathcal{M}, x^{j} \models P$ holds for all $j<1$,
but $\mathcal{M}, x \not \vDash Q \mathbf{R} P$ since $\mathcal{M}, x^{1} \not \models P$ and there is no $j<1$ for which $\mathcal{M}, x^{j} \models Q$.

T-79.5101
Advanced Course in Computational Logic
Exercise Session 10

Solutions

1. a) $P \wedge \mathbf{E F} Q$
b) $\mathbf{E F}(P \wedge \mathbf{A X A G} \neg P)$
c) $\mathbf{A G}(P \rightarrow \mathbf{A X}(P \rightarrow \mathbf{E F} Q))$
d) $(P \rightarrow \mathbf{A}(P \mathbf{U} Q)) \wedge(\neg P \rightarrow \mathbf{A X}(P \vee \mathbf{A X} P))$
e) $\mathbf{E}(P \mathbf{U A G}((Q \rightarrow \mathbf{A X} \neg Q) \wedge(\neg Q \rightarrow \mathbf{A X} Q)))$
f) $\mathbf{A G}(P \rightarrow \mathbf{A G}(\neg Q \wedge \neg R)) \wedge \mathbf{A G}((Q \vee R) \rightarrow \mathbf{A G} \neg P)$
2. a) $\mathcal{M}=\langle S, R, v\rangle$, where $S=\{s, t\}, R=\{\langle s, t\rangle,\langle t, t\rangle\}, v(s, P)=$ true and $v(t, P)=$ false

$\mathcal{M}, s \models$ AF P holds since (s, t, t, t, \ldots) is the only full path beginning from s and on this path there is a state s such that $\mathcal{M}, s \models P$ holds. Thus AF P is satisfiable.
For $\mathbf{G F} P$ to be satisfiable in the model \mathcal{M} there should be a full path x in \mathcal{M} for which $\mathcal{M}, x \models \mathbf{G F} P$. Then $\mathcal{M}, x^{i} \models \mathbf{F} P$ should hold for all $i \geq 0$, that is, for all $i \geq 0$ there should be a $j \geq i$ such that $\mathcal{M}, x^{j} \models P$. In other words, P should be true on infinitely many (infinite) suffixes of the path x However, there are no such paths since the only full paths in \mathcal{M} are (s, t, t, t, \ldots) and (t, t, t, \ldots), and P is true only on finitely many suffixes of these paths. Thus the formula GF P is not satisfiable in the model \mathcal{M}.
b) $\mathcal{M}=\langle S, R, v\rangle$, where $S=\{s, t\}, R=\{\langle s, s\rangle,\langle s, t\rangle,\langle t, t\rangle\}$, $v(s, P)=$ false and $v(t, P)=$ true.

$\mathcal{M}, s \models$ EFAG P and $\mathcal{M}, t \models$ EFAG P hold since the model includes the full paths (s, t, t, t, \ldots) and (t, t, t, \ldots) which go though the state t, and clearly $\mathcal{M}, t \models \mathbf{A G} P$. Thus the formula EFAG P is valid in the model.

However, FG P is not valid in the model: the full path (s, s, s, \ldots) has no infinite suffix x such that $\mathcal{M}, x^{i} \models P$ holds for all i (since $v(s, P)=$ false $)$, and hence $\mathcal{M},(s, s, s, \ldots) \not \models$ FG P.
c) $\mathcal{M}=\langle S, R, v\rangle$, where $S=\{s, t\}, R=\{\langle s, s\rangle,\langle s, t\rangle,\langle t, s\rangle,\langle t, t\rangle\}$, $v(s, P)=$ true and $v(t, P)=$ false.

The formula $\mathbf{F X} P$ is satisfiable since the model has (for example) the full path $x=(t, s, s, s, \ldots$) for which $\mathcal{M}, x \models \mathbf{X} P$ (since $v(s, P)=$ true), and hence $\mathcal{M}, x \models \mathbf{F X} P$.
However, the formula EFAX P is not satisfiable in any state of the model: otherwise, there should be a full path that begins from s or t which goes through states s and t which would also go though a state which satisfies $\mathbf{A X} P$. In other words, either $\mathcal{M}, s \models \mathbf{A X} P$ or $\mathcal{M}, t \models \mathbf{A X} P$ should holds; however, this is not the case since both s and t have a successor (t) in R for which $\mathcal{M}, t \not \models P$.
3. a) $\mathcal{M}=\langle S, R, v\rangle$, where $S=\{s, t\}, R=\{\langle s, t\rangle,\langle t, s\rangle\}, v(s, P)=$ $v(s, V)=$ false and $v(t, P)=v(t, V)=$ true.

Here we can separately look at the paths $x_{1}=(s, t, s, t, \ldots)$ and $x_{2}=(t, s, t, s, \ldots)$.

- $\mathcal{M}, s \models \mathbf{E}(\neg V \mathbf{U} P)$ holds since $\mathcal{M}, x_{1}^{1} \models P$ (because $v(t, P)=$ true), and for all $i<1$ we have $\mathcal{M}, x_{1}^{i} \models \neg V$. Furthermore, $\mathcal{M}, t \models \mathbf{E}(\neg V \mathbf{U} P)$ holds since the full path x_{2} starts from t and $\mathcal{M}, x_{2}^{0} \models P$.
- Since $\mathcal{M}, x_{1}^{0} \models \neg P$, we have $\mathcal{M}, s \models \mathbf{E}(V \mathbf{U} \neg P)$. Similarly, $\mathcal{M}, t \models \mathbf{E}(V \mathbf{U} \neg P)$ holds since $\mathcal{M}, x_{2}^{1} \models \neg P$ and $\mathcal{M}, x_{2}^{i} \models V$ for all $i<1$.
- $\mathcal{M}, s \models \mathbf{A F}(V \rightarrow \mathbf{A X} \neg V) \wedge \mathbf{E F} V$ since x_{1} is the only path that starts from s and $\mathcal{M}, x_{1} \models \mathbf{F}(V \rightarrow \mathbf{A X} \neg V)$ (because, e.g., $\mathcal{M}, x_{1}^{0} \models V \rightarrow \mathbf{A X} \neg V$ since $v(s, V)=$ false) and, additionally, $\mathcal{M}, x_{1} \models \mathbf{F} V$ since the path x_{1} goes through the state t and $v(t, V)=$ true.

Similarly, we have $\mathcal{M}, t \models \mathbf{A F}(V \rightarrow \mathbf{A X} \neg V) \wedge \mathbf{E F} V$ since x_{2} is the only full path that starts from t and $\mathcal{M}, x_{2}^{0} \models$ $\mathbf{A X} \neg V$ holds since $\mathcal{M}, t \models \mathbf{A X} \neg V$ (the only successor of t is s and $v(s, V)=$ false $)$. Furthermore, $\mathcal{M}, t \models \mathbf{E F} V$ holds since for the full path x_{2} that starts from t we have $\mathcal{M}, x_{2}^{0} \models V$ (because $v(t, V)=$ true).
b) $\mathcal{M}=\langle S, R, v\rangle$, where $S=\{s, t\}, R=\{\langle s, t\rangle,\langle t, s\rangle\}, v(t, P)=$ $v(s, V)=$ false and $v(s, P)=v(t, V)=$ true.

Again, we can separate the paths $x_{1}=(s, t, s, t, \ldots)$ and $x_{2}=$ (t, s, t, s, \ldots).

- $\mathcal{M}, s \models \mathbf{A G}(P \rightarrow \mathbf{F} V)$ holds since x_{1} is the only full path that starts from s and $\mathcal{M}, x_{1} \models \mathbf{G}(P \rightarrow \mathbf{F} V)$. This is because $\mathcal{M}, x_{1}^{2 k} \models \mathbf{F} V$ (since $\left.\mathcal{M}, x_{1}^{2 k+1} \models V\right)$ holds for all $k \geq 0$ and, additionally, $\mathcal{M}, x_{1}^{2 k+1} \not \models P$ holds for all $k \geq 0$.
Similarly, $\mathcal{M}, t \models \mathbf{A G}(P \rightarrow \mathbf{F} V)$ holds since x_{2} is the only full path that starts from t and $\mathcal{M}, x_{2} \models \mathbf{G}(P \rightarrow \mathbf{F} V)$ because $\mathcal{M}, x_{2}^{2 k} \notin P$ and $\mathcal{M}, x_{2}^{2 k+1} \models \mathbf{F} V$ holds for all $k \geq 0$.
- $\mathcal{M}, s \models \mathbf{A F}(P \wedge \mathbf{F}(\neg P \wedge \mathbf{X} P))$ holds since x_{1} is the only full path that starts from s and $\mathcal{M}, x_{1}^{0} \models P \wedge \mathbf{F}(\neg P \wedge \mathbf{X} P)$ holds because $\mathcal{M}, x_{1}^{0} \models P(v(s, P)=$ true $)$ and, additionally, $\mathcal{M}, x_{1}^{0} \models \mathbf{F}(\neg P \wedge \mathbf{X} P)$ holds because $\mathcal{M}, x_{1}^{1} \models \neg P \wedge \mathbf{X} P$ (since $v(t, P)=$ false $\left.\mathcal{M},\left(x_{1}^{1}\right)^{1} \models P\right)$.
Similarly, $\mathcal{M}, t \models \mathbf{A F}(P \wedge \mathbf{F}(\neg P \wedge \mathbf{X} P))$ holds since x_{2} is the only full path that starts from t and because $x_{2}^{1}=x_{1}=x_{1}^{0}$ and $\mathcal{M}, x_{1}^{0} \models P \wedge \mathbf{F}(\neg P \wedge \mathbf{X} P)$, and (cf. above) $\mathcal{M}, x_{2} \models$ $\mathbf{F}(P \wedge \mathbf{F}(\neg P \wedge \mathbf{X} P)$)
- $\mathcal{M}, s \models \mathbf{A}(\neg V \mathbf{U} V)$ holds since x_{1} is the only full path that starts from s and $\mathcal{M}, x_{1} \models \neg V \mathbf{U} V$ because $\mathcal{M}, x_{1}^{1} \models V$ $(v(t, V)=$ true $)$ and $\mathcal{M}, x_{1}^{i} \models \neg V$ for all $i<1(v(s, V)=$ false).
Since $v(t, V)=$ true, $\mathcal{M}, x \models \neg V \mathbf{U} V$ holds for all full paths x that start from t. Thus $\mathcal{M}, t \models \mathbf{A}(\neg V \mathbf{U} V)$ holds.

