
T-79.5101 Spring 2008

Advanced Course in Computational Logic

Exercise Session 11

Solutions

1. M :

a P

��
b P

����
��

��
��

�� ��=
==

==
==

= f Q,R

__>>>>>>>>

cQ // d XX e PZZ

OO

a) M, a 6|= A(PUQ), since (for example) the full path (a, b, d, d, d, . . .)
starts from state a but does not go through any state s ∈ S in
which M, s |= Q holds.

b) A full path in a model is F -fair if and only if every ϕ ∈ F is
infinitely often true on the path.

Since {s ∈ S | M, s |= R} = {f}, it follows that all F -fair paths in
M must visit state f infinitely often. Since f is not reachably from
neither of the states c and d, there is no F -fair path that visits
these two states. Hence every F -fair path in M can be represented
as

(a, b, e, . . . , e
︸ ︷︷ ︸

n1 times

, f, a, b, e, . . . , e
︸ ︷︷ ︸

n2 times

, f, a, b, e, . . . , e
︸ ︷︷ ︸

n3 times

, f, . . .)

where n1, n2, n3, . . . are (finite) positive integers. Especially, since
n1 is finite and, furthermore, M, a |= P , M, b |= P , M, e |= P

and M, f |= Q hold, it follows that M, a |=F A(PUQ) holds.

c) M, a |= EGP holds since there is the full path (a, b, e, e, e, . . .)
and for each state s ∈ {a, b, e} we have M, s |= P .

d) Notice that the path (a, b, e, e, e, . . .) is the only full path in which
P holds and which starts from a. However, this path is not F -fair
since it does not visit the state f . Hence M, a 6|=F EGP .

2. M :

1

aP //

�� ''NNNNNNNNNNNNNN d Q

��

��

cQ

WW

��>
>>

>>
>>

> b P,Qoo

UU

e

??��������

We sort the subformulas of AXE
(
(P → Q)U(P ∧Q)

)
so that the truth

value of each subformula can be iteratively determined when the truth
values of the preceding subformulas are known. One such order is

P,Q,P → Q,P ∧ Q,E
(
(P → Q)U(P ∧ Q)

)
,AXE

(
(P → Q)U(P ∧ Q)

)
.

The truth values of the formulas P and Q are given directly by the
valuation v. These in turn allow us to evaluate P → Q in each of the
states of the model:

aP //

�� ''NNNNNNNNNNNNNN d Q,P → Q

��

��

cQ,P → Q

WW

��>
>>

>>
>>

> b P,Q, P → Qoo

UU

e P → Q

??��������

Then we consider the subformula P ∧Q:

aP //

�� ''NNNNNNNNNNNNNN d Q,P → Q

��

��

cQ,P → Q

WW

��>
>>

>>
>>

> b P,Q, P → Q,P ∧ Qoo

UU

e P → Q

??��������

Next we evaluate E
(
(P → Q)U(P ∧Q)

)
using the algorithm CheckEU

in the lecture notes. We start from the set of states in which P ∧ Q

is true ({b}) and mark E
(
(P → Q)U(P ∧ Q)

)
as true in those states.

Then we collect all states s ∈ S such that sRb and M, s |= P → Q

(disregarding those states in which E
(
(P → Q)U(P ∧ Q)

)
is already

marked as true). We arrive at the set of states {d, e}, and hence mark
E

(
(P → Q)U(P ∧ Q)

)
as true in these states. Repeat this for the

predecessors of d and e, and again for the predecessors of the states
we arrive at, iteratively until we do not arrive at any new states. This
procedure can be described as follows.

2

Round Visited states Considered
states

New states

1 {b} {b} {d, e}
2 {b, d, e} {d, e} {c}
3 {b, c, d, e} {c} ∅

We now know that E
(
(P → Q)U(P ∧ Q)

)
is true precisely in the set

of states {b, c, d, e}.

a //

�� ''NNNNNNNNNNNNNN d E
(
(P → Q)U(P ∧ Q)

)

��

��

cE
(
(P → Q)U(P ∧ Q)

)

WW

��>
>>

>>
>>

b E
(
(P → Q)U(P ∧ Q)

)
oo

UU

e E
(
(P → Q)U(P ∧ Q)

)

??�������

Finally, we can evaluate the formula AXE
(
(P → Q)U(P ∧ Q)

)
: the

formula is true in a state s ∈ S if and only if E
(
(P → Q)U(P ∧Q)

)
is

true in all successors of s. Hence we arrive at

aAXE
(
(P → Q)U(P ∧ Q)

)
//

�� ''NNNNNNNNNNNNNN d AXE
(
(P → Q)U(P ∧ Q)

)

��

��

c

WW

��>
>>

>>
>>

> b AXE
(
(P → Q)U(P ∧ Q)

)
oo

UU

e AXE
(
(P → Q)U(P ∧ Q)

)

??�������

3. M :

a P

����
��

��
��

��>
>>

>>
>>

>

bQ

��

c P,Q

��
d

UU

// e

WW

For the evaluation we employ the CheckEG and CheckEU algorithms.
First, we have to express the formula using the operators EU and EG:

AG
(
Q → A(EFPUAFP)

)

≡ AG
(
Q → A(E(⊤UP)U¬EG¬P)

)

≡ AG
(
Q → ¬E

(
(¬¬EG¬P)U(¬E(⊤UP) ∧ ¬¬EG¬P)

)
∧ ¬EG¬¬EG¬P

)

≡ AG
(
Q → ¬E

(
(EG¬P)U(¬E(⊤UP) ∧ EG¬P)

)
∧ ¬EGEG¬P

)

≡ ¬EF¬
(
Q → ¬E

(
(EG¬P)U(¬E(⊤UP) ∧ EG¬P)

)
∧ ¬EGEG¬P

)

≡ ¬E
(
⊤U¬

(
Q → ¬E

(
(EG¬P)U(¬E(⊤UP) ∧ EG¬P)

)
∧ ¬EGEG¬P

))

3

Then, sort the subformulas into a suitable order.

P, Q,¬P,EG¬P,EGEG¬P,¬EGEG¬P,

E(⊤UP),¬E(⊤UP),¬E(⊤UP) ∧ EG¬P,

E
(
(EG¬P)U(¬E(⊤UP) ∧ EG¬P)

)
,¬E

(
(EG¬P)U(¬E(⊤UP) ∧ EG¬P)

)
,

¬E
(
(EG¬P)U(¬E(⊤UP) ∧ EG¬P)

)
∧ ¬EGEG¬P,

Q → ¬E
(
(EG¬P)U(¬E(⊤UP) ∧ EG¬P)

)
∧ ¬EGEG¬P,

¬
(
Q → ¬E

(
(EG¬P)U(¬E(⊤UP) ∧ EG¬P)

)
∧ ¬EGEG¬P

)
,

E
(
⊤U¬

(
Q → ¬E

(
(EG¬P)U(¬E(⊤UP) ∧EG¬P)

)
∧ ¬EGEG¬P

))
,

¬E
(
⊤U¬

(
Q → ¬E

(
(EG¬P)U(¬E(⊤UP) ∧ EG¬P)

)
∧ ¬EGEG¬P

))

Since P is true in the states a and c, ¬P is true in the states {b, d, e}.
Now we can apply the algorithm CheckEG to evaluate EG¬P . First,
construct the restriction M′ based on the states in which ¬P is true.

b¬P,Q

��
d¬P

UU

// e ¬P

Then, find the non-trivial strongly connected components (SCCs) of
M′, and mark EG¬P as true in all states belonging to one of the
non-trivial SCCs.

Now, similarly as in the algorithm CheckEU, iteratively collect all the
states that are predecessors of at least one state in the non-trivial SCCs
of M′. Here the only non-trivial SCC of M′ is {b, d}. Since the state
e is not a predecessor of b or d, the CheckEG algorithm terminates
immediately:

Round Collected
states

Considered
states

New states

1 {b, d} {b, d} ∅

Hence we arrive at

a P,¬Q

����
��

��
��

��>
>>

>>
>>

>

b¬P,Q,EG¬P

��

c P,Q

��
d¬P,¬Q,EG¬P

UU

// e ¬P,¬Q

WW

4

Now determine the states in which the subformula EGEG¬P is true
using CheckEG. We consider the restriction M′′ based on those states
in which EG¬P is true.

b¬P,Q,EG¬P

��
d¬P,¬Q,EG¬P

UU

The only non-trivial SCC of M′′ is {b, d}. Again, CheckEG terminates
immediately.

Round Collected
states

Considered
states

New states

1 {b, d} {b, d} ∅

We now know that the formula EGEG¬P is true in the states b and
d, and hence ¬EGEG¬P is true in the states a, c, and e.

a P,¬Q,¬EGEG¬P

����
��

��
��

��>
>>

>>
>>

>

b¬P,Q,EG¬P

��

c P,Q,¬EGEG¬P

��
d¬P,¬Q,EG¬P

UU

// e ¬P,¬Q,¬EGEG¬P

WW

Now evaluate the subformula E(⊤UP) using CheckEU:

Round Collected
states

considered
states

New states

1 {a, c} {a, c} {e}
2 {a, c, e} {e} {d}
3 {a, c, d, e} {d} {b}
4 {a, b, c, d, e} {b} ∅

Thus, the formula E(⊤UP) is true in all states of M, and there-
fore ¬E(⊤UP) is false in all states. It follows that the conjunction
¬E(⊤UP) ∧ EG¬P is also false in all the states.

Then we again use CheckEU for considering
E

(
(EG¬P)U(¬E(⊤UP)∧EG¬P)

)
. The algorithm terminates imme-

diately, since the set of states from which we start from is empty by
the above.

5

Round Collected
states

Considered
states

New states

1 ∅ ∅ ∅

Thus the formula ¬E
(
(EG¬P)U(¬E(⊤UP) ∧ EG¬P)

)
is true in all

the states of M. Since we already know that ¬EGEG¬P is true in the
states a,c, and e, we can evaluate the conjunction

ϕ = ¬E
(
(EG¬P)U(¬E(⊤UP) ∧EG¬P)

)
∧ ¬EGEG¬P

in each state of the model:

a ϕ

����
��

��
��

��>
>>

>>
>>

>

bQ

��

c Q,ϕ

��
d

UU

// e ϕ

WW

(For clarity, only those subformulas are visible which are still needed.)

Now the subformula Q→ ϕ:

a ϕ,Q → ϕ

����
��

��
��

��>
>>

>>
>>

>

bQ

��

c Q,ϕ,Q → ϕ

��
dQ → ϕ

UU

// e ϕ,Q → ϕ

WW

The subformula ¬(Q → ϕ):

a

����
��

��
��

��>
>>

>>
>>

>

b¬(Q → ϕ)

��

c

��
d

UU

// e

WW

The subformula E
(
⊤U¬(Q → ϕ)

)
using CheckEU:

6

Round Collected
states

Considered
states

New states

1 {b} {b} {a, d}
2 {a, b, d} {a, d} ∅

a E
(
⊤U¬(Q → ϕ)

)

����
��

��
��

��>
>>

>>
>>

>

bE
(
⊤U¬(Q → ϕ)

)

��

c

��
dE

(
⊤U¬(Q → ϕ)

)

UU

// e

WW

Finally, we arrive at:

a

����
��

��
��

��>
>>

>>
>>

>

b

��

c ¬E
(
⊤U¬(Q → ϕ)

)

��
d

UU

// e ¬E
(
⊤U¬(Q → ϕ)

)

WW

7

T-79.5101 Spring 2008

Advanced Course in Computational Logic

Exercise Session 12

Solutions

1. M :

a

��

��

��>
>>

>>
>>

>

��

bP,Q

HH

��=
==

==
==

= c

����
��

��
��

d P

SS

XX

The closure of X(¬PUQ):

CL
(
X(¬PUQ)

)
=

{
X(¬PUQ),¬X(¬PUQ),¬PUQ,X¬(¬PUQ),
¬(¬PUQ),¬P,Q,¬X¬(¬PUQ), P,¬Q

}

Now construct the atoms. Since v(a, P) = v(a,Q) = false, we can
construct the following atomic tableau:

⊤

¬P

¬Q

��
�� PPPP

¬PUQ

��
� @@

Q

⊗

¬P

X(¬PUQ)

¬X¬(¬PUQ)

¬(¬PUQ)

��
� @@

¬Q

P

⊗

¬Q

¬X(¬PUQ)

X¬(¬PUQ)

The open branches in the tableau give us the sets of formulas

K1 =
{
⊤,¬P,¬Q,¬PUQ,X(¬PUQ),¬X¬(¬PUQ)

}

K2 =
{
⊤,¬P,¬Q,¬(¬PUQ),¬X(¬PUQ),X¬(¬PUQ)

}

Hence for state a we obtain the atoms (a,K1) and (a,K2).

Since the valuation for the formulas P and Q in state c is identical to
the valuation in state a, for state c we obtain the atoms (c,K1) and
(c,K2).

8

Now consider state b.

⊤

P

Q

��
�� hhhhhhh

¬PUQ

��
� `````̀

Q

��
� HHH

X(¬PUQ)

¬X¬(¬PUQ)

¬X(¬PUQ)

X¬(¬PUQ)

¬P

X(¬PUQ)
⊗

¬(¬PUQ)

��
� @@

¬Q

P

⊗

¬Q

¬X(¬PUQ)
⊗

The open branches in the tableau give us the sets of formulas

K3 =
{
⊤, P,Q,¬PUQ,X(¬PUQ),¬X¬(¬PUQ)

}

K4 =
{
⊤, P,Q,¬PUQ,¬X(¬PUQ),X¬(¬PUQ)

}

Thus for b we have the atoms (b,K3) and (b,K4).

Then consider state d.

⊤

P

¬Q

((((
(((PPPP

¬PUQ

��
� @@

Q

⊗

¬P

X(¬PUQ)
⊗

¬(¬PUQ)

��
� `````̀

¬Q

P

��
� HHH

X(¬PUQ)

¬X¬(¬PUQ)

¬X(¬PUQ)

X¬(¬PUQ)

¬Q

¬X(¬PUQ)

X¬(¬PUQ)

Now we arrive at the sets of formulas

K5 =
{
⊤, P,¬Q,¬(¬PUQ),X(¬PUQ),¬X¬(¬PUQ)

}

K6 =
{
⊤, P,¬Q,¬(¬PUQ),¬X(¬PUQ),X¬(¬PUQ)

}

(Two open branches give us K6!) Thus for d we have the atoms (d,K5)
and (d,K6).

Then, we construct a graph G = (N,E). The set of nodes N is the set
of atoms we have just obtained, that is,

N =
{
(a,K1), (a,K2), (b,K3), (b,K4), (c,K1), (c,K2), (d,K5), (d,K6)

}
.

The set of edges E is defined as follows: there is an edge from the atom
(s,K) to atom (s′, K ′) if and only if

9

(a) sRs′ (in model M), and

(b) for each formula Xϕ ∈ CL(X(¬PUQ)) we have Xϕ ∈ K if and
only if ϕ ∈ K ′.

To check condition (b) we can first form a “compatibility relation” over
the atoms:

K1 K2 K3 K4 K5 K6

K1 × × ×
K2 × × ×
K3 × × ×
K4 × × ×
K5 × × ×
K6 × × ×

In the table, there is a tick in the jth column of the ith row if and
only if the condition “Xϕ ∈ Ki if and only if ϕ ∈ Kj” holds for each
Xϕ ∈ CL(X(¬PUQ)). For example, this is fulfilled by (K1, K3) since
X(¬PUQ) ∈ K1 is the only formula in K1 of the form Xϕ and we have
¬PUQ ∈ K3.

The conditions (a) and (b) can now be checked using R and this
table. As an example, consider the atom (b,K3). Now any atom in
{
(a,K1), (a,K2), (d,K5), (d,K6)

}
together with (b,K3) fulfills condi-

tion (a). However, since condition (b) does not hold for any of (K3, K2),
(K3, K5), (K3, K6), the only edge from (b,K3) is

〈
(b,K3), (a,K1)

〉
.

In the end we arrive at the graph G:

(c,K2)

�� ��
(c,K1) (a,K1)oo

��

�� %%JJJJJJJJJ
(d,K5)oo (d,K6)oo

��

&&

(b,K3)

@@

(b,K4)

OO 99ttttttttt
// (a,K2)

UU

]]

VV

eeJJJJJJJJJ

In order to evaluate EX(¬PUQ) in state a, we check whether there is
a path x in G fulfilling the following conditions: (i) x begins at one of
the atoms (a,K) (K ∈ {K1, . . . , K6}), (ii) X(¬PUQ) is in K, and (iii)
x leads to a self-fulfilling non-trivial SCC of G.

The only non-trivial SCC of G is

C =
{
(a,K1), (a,K2), (b,K3), (b,K4), (c,K2), (d,K5), (d,K6)

}
.

10

This SCC is also self-fulfilling, since the only formula of the form ϕUψ

appearing in the atoms of C is ¬PUQ, and C includes an atom for
which Q ∈ K3 holds ((b,K3), for example)

Since (a,K1) ∈ C, the self-fulfilling non-trivial SCC C is reachable
from (a,K1). Thus, since X(¬PUQ) ∈ K1, we know that M, a |=
EX(¬PUQ) holds.

2. M:

a

����
��

��
��

��>
>>

>>
>>

>

��

bP 44LL c P
tt mm

M, a |= AFGP iff M, a |= ¬E¬FGP iff M, a 6|= E¬FGP . Hence we
will investigate whether M, a |= E¬FGP holds. First, rewrite ¬FGP
using only the temporal connectives X and U.

¬FGP ≡ ¬F¬F¬P

≡ ¬F¬(⊤U¬P)
≡ ¬

(
⊤U¬(⊤U¬P)

)

The closure of ¬
(
⊤U¬(⊤U¬P)

)
:

CL
(
¬

(
⊤U¬(⊤U¬P)

))
=

{
¬

(
⊤U¬(⊤U¬P)

)
,⊤U¬(⊤U¬P),

⊤,¬(⊤U¬P),X
(
⊤U¬(⊤U¬P)

)
,¬⊤,

⊤U¬P,¬X
(
⊤U¬(⊤U¬P)

)
,¬P,

X(⊤U¬P),X¬
(
⊤U¬(⊤U¬P)

)
, P,

¬X(⊤U¬P),¬X¬
(
⊤U¬(⊤U¬P)

)
,

X¬(⊤U¬P),¬X¬(⊤U¬P)
}

Construct the atoms. Since v(a, P) = false, for state a we can construct
the atomic tableau

⊤

¬P

��
�� HHH

⊤U¬P

�� @@
T1 T2

¬(⊤U¬P)

��
� @@

P

¬⊤

⊗

P

¬X(⊤U¬P)
⊗

where the branch T1 is

11

¬P

((((
(((hhhhhhh

⊤U¬(⊤U¬P)

���
��

@@
¬(⊤U¬P)

⊗

⊤

X
`

⊤U¬(⊤U¬P)
´

¬X¬
`

⊤U¬(⊤U¬P)
´

��
� HHH

X(⊤U¬P)

¬X¬(⊤U¬P)

¬X(⊤U¬P)

X¬(⊤U¬P)

¬
`

⊤U¬(⊤U¬P)
´

���
��

@@
⊤U¬P

¬⊤

⊗

⊤U¬P

¬X
`

⊤U¬(⊤U¬P)
´

X¬
`

⊤U¬(⊤U¬P)
´

��
� HHH

X(⊤U¬P)

¬X¬(⊤U¬P)

¬X(⊤U¬P)

X¬(⊤U¬P)

and the branch T2

⊤

X(⊤U¬P)

¬X¬(⊤U¬P)


   `````̀

⊤U¬(⊤U¬P )

��
��

@@
¬(⊤U¬P )

⊗

⊤

X
`

⊤U¬(⊤U¬P )
´

¬X¬
`

⊤U¬(⊤U¬P )
´

¬
`

⊤U¬(⊤U¬P )
´

��
��

@@
⊤U¬P

¬⊤

⊗

⊤U¬P

¬X
`

⊤U¬(⊤U¬P )
´

X¬
`

⊤U¬(⊤U¬P )
´

From the open branches we obtain

K1 =
{
⊤,¬P,⊤U¬P,⊤U¬(⊤U¬P ),X

(
⊤U¬(⊤U¬P )

)
,

¬X¬
(
⊤U¬(⊤U¬P )

)
,X(⊤U¬P ),¬X¬(⊤U¬P )

}

K2 =
{
⊤,¬P,⊤U¬P,⊤U¬(⊤U¬P ),X

(
⊤U¬(⊤U¬P )

)
,

¬X¬
(
⊤U¬(⊤U¬P )

)
,¬X(⊤U¬P ),X¬(⊤U¬P )

}

K3 =
{
⊤,¬P,⊤U¬P,¬

(
⊤U¬(⊤U¬P )

)
,¬X

(
⊤U¬(⊤U¬P )

)
,

X¬
(
⊤U¬(⊤U¬P )

)
,X(⊤U¬P ),¬X¬(⊤U¬P )

}

K4 =
{
⊤,¬P,⊤U¬P,¬

(
⊤U¬(⊤U¬P )

)
,¬X

(
⊤U¬(⊤U¬P )

)
,

X¬
(
⊤U¬(⊤U¬P )

)
,¬X(⊤U¬P ),X¬(⊤U¬P )

}

K5 =
{
⊤,¬P,⊤U¬P,X(⊤U¬P ),¬X¬(⊤U¬P ),⊤U¬(⊤U¬P ),
X

(
⊤U¬(⊤U¬P )

)
,¬X¬

(
⊤U¬(⊤U¬P )

)}

K6 =
{
⊤,¬P,⊤U¬P,X(⊤U¬P ),¬X¬(⊤U¬P ),¬

(
⊤U¬(⊤U¬P )

)
,

¬X
(
⊤U¬(⊤U¬P )

)
,X¬

(
⊤U¬(⊤U¬P )

)}

Thus we obtain the atoms (a,K1), (a,K2), (a,K3), (a,K4), (a,K5), and
(a,K6).

12



Since v(b, P ) = v(c, P ) = true, for b and c we can construct the atomic
tableau

⊤

P

��
�� PPPP

⊤U¬P

��
� @@

¬P

⊗

⊤

X(⊤U¬P )

T3

¬(⊤U¬P )

��
� @@

P

¬⊤

⊗

P

¬X(⊤U¬P )

T4

where the branch T3 is

¬X¬(⊤U¬P )

   
   `````̀

⊤U¬(⊤U¬P)

��
��

@@
¬(⊤U¬P)

⊗

⊤

X
`

⊤U¬(⊤U¬P)
´

¬X¬
`

⊤U¬(⊤U¬P)
´

¬
`

⊤U¬(⊤U¬P)
´

��
��

@@
⊤U¬P

¬⊤

⊗

⊤U¬P

¬X
`

⊤U¬(⊤U¬P)
´

X¬
`

⊤U¬(⊤U¬P)
´

and the branch T4

X¬(⊤U¬P)

 hhhhhhh

⊤U¬(⊤U¬P)

��
�� hhhhhhh

¬(⊤U¬P)

��
�� PPPP

X
`

⊤U¬(⊤U¬P)
´

¬X¬
`

⊤U¬(⊤U¬P)
´

¬X
`

⊤U¬(⊤U¬P)
´

X¬
`

⊤U¬(⊤U¬P)
´

⊤

X
`

⊤U¬(⊤U¬P)
´

¬X¬
`

⊤U¬(⊤U¬P)
´

¬
`

⊤U¬(⊤U¬P)
´

��
��

@@
⊤U¬P

¬⊤

⊗

⊤U¬P

¬X
`

⊤U¬(⊤U¬P)
´

⊗

From the open branches we obtain

K7 =
{
⊤, P,⊤U¬P,X(⊤U¬P),¬X¬(⊤U¬P),⊤U¬(⊤U¬P),
X

(
⊤U¬(⊤U¬P)

)
,¬X¬

(
⊤U¬(⊤U¬P)

)}

K8 =
{
⊤, P,⊤U¬P,X(⊤U¬P),¬X¬(⊤U¬P),¬

(
⊤U¬(⊤U¬P)

)
,

¬X
(
⊤U¬(⊤U¬P)

)
,X¬

(
⊤U¬(⊤U¬P)

)}

K9 =
{
⊤, P,¬(⊤U¬P),¬X(⊤U¬P),X¬(⊤U¬P),⊤U¬(⊤U¬P),
X

(
⊤U¬(⊤U¬P)

)
,¬X¬

(
⊤U¬(⊤U¬P)

)}

K10 =
{
⊤, P,¬(⊤U¬P),¬X(⊤U¬P),X¬(⊤U¬P),⊤U¬(⊤U¬P),
¬X

(
⊤U¬(⊤U¬P)

)
,X¬

(
⊤U¬(⊤U¬P)

)}

Thus we obtain the atoms (b,K7), (b,K8), (b,K9), (b,K10), (c,K7),
(c,K8), (c,K9), and (c,K10).

13

Now we have the following “compatibility relation”:

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

K1 × × × ×
K2 × ×
K3 × × × ×
K4

K5 × × × ×
K6 × × × ×
K7 × × × ×
K8 × × × ×
K9 × ×
K10

The graph G:

(a,K1)
��

//

��yyssssssssss

%%KKKKKKKKK
(b,K7)

��

��

(a,K2)

��

##

%%KKKKKKKKKK

��9
99

99
99

99
99

99
99

99
(a,K5)VV

UU

oo

99sssssssss
// (c,K7)

UU

VV

(b,K9)
&&

��

11

%%KKKKKKKKKK
(c,K9)

xx

��

qq

yyssssssssss

(b,K10) (c,K10)

(a,K3)
��

yyssssssssss

�� %%KKKKKKKKK
// (b,K8)

��

��
(a,K4) (a,K6)VV

oo

UU 99sssssssss
// (c,K8)

UU

VV

The non-trivial SCCs of G:

C1 =
{
(a,K1), (a,K5)

}

C2 =
{
(a,K3), (a,K6)

}

C3 =
{
(b,K7), (c,K7)

}

C4 =
{
(b,K8), (c,K8)

}

C5 =
{
(b,K9), (c,K9)

}

Out of these, C2 and C5 are self-fulfilling. Now check whether C2 or
C5 is reachable from some atom (a,K), where ¬

(
⊤U¬(⊤U¬P)

)
∈ K.

Since the formula ¬
(
⊤U¬(⊤U¬P)

)
is in K6 and C2 is reachable from

14

(a,K6) (since (a,K6) ∈ C2), it follows that M, a |= E¬FGP holds.
Thus M, a |= AFGP does not hold.

15

T-79.5101 Spring 2008

Advanced Course in Computational Logic

Exercise Session 13

Solutions

1. We start from the negation of the given formula,

¬

((

Q ∨
(
P ∧ AXA(PUQ)

))

→ A(PUQ)

)

,

and translate it to positive normal form:
(

Q ∨
(
P ∧AXA(PUQ)

))

∧ ¬A(PUQ)
(

Q ∨
(
P ∧ AXA(PUQ)

))

∧E(¬PBQ)

Now construct the CTL tableau. We start with the OR-node

D0 =
{(

Q ∨
(
P ∧AXA(PUQ)

))

∧ E(¬PBQ)
}

,

the AND-successors of which are

C0 =
{(

Q ∨
(
P ∧ AXA(PUQ)

))

∧E(¬PBQ),

Q ∨
(
P ∧ AXA(PUQ)

)
,E(¬PBQ),

Q,¬Q,¬P ∨ EXE(¬PBQ),¬P
}

C1 =
{(

Q ∨
(
P ∧ AXA(PUQ)

))

∧E(¬PBQ),

Q ∨
(
P ∧ AXA(PUQ)

)
,E(¬PBQ),

Q,¬Q,¬P ∨ EXE(¬PBQ),EXE(¬PBQ)
}

C2 =
{(

Q ∨
(
P ∧ AXA(PUQ)

))

∧E(¬PBQ),

Q ∨
(
P ∧ AXA(PUQ)

)
,E(¬PBQ),

P ∧AXA(PUQ), P,AXA(PUQ),¬Q,

¬P ∨EXE(¬PBQ),¬P
}

C3 =
{(

Q ∨
(
P ∧ AXA(PUQ)

))

∧E(¬PBQ),

Q ∨
(
P ∧ AXA(PUQ)

)
,E(¬PBQ),

P ∧AXA(PUQ), P,AXA(PUQ),¬Q,

¬P ∨EXE(¬PBQ),EXE(¬PBQ)
}

16

The nodes C0, C1, and C2 can be pruned, since they are contradictory
(contain the formulas φ and ¬φ for some φ). (In other words, we can in
fact prune contradictory AND-nodes already when constructing AND-
nodes without affecting the end result! Left as an exercise.)

Since the nodeC3 contains the formulas AXA(PUQ) and EXE(¬PBQ),
for C3 we have the OR-successor D1 =

{
A(PUQ),E(¬PBQ)

}
.

The AND-successors of D1:

C4 = D1 ∪
{
Q,¬Q,¬P ∨ EXE(¬PBQ),¬P

}

C5 = D1 ∪
{
Q,¬Q,¬P ∨ EXE(¬PBQ),EXE(¬PBQ)

}

C6 = D1 ∪
{
P ∧ AXA(PUQ), P,AXA(PUQ),¬Q,

¬P ∨ EXE(¬PBQ),¬P
}

C7 = D1 ∪
{
P ∧ AXA(PUQ), P,AXA(PUQ),¬Q,

¬P ∨ EXE(¬PBQ),EXE(¬PBQ)
}

The nodes C4, C5, and C6 are contradictory and hence pruned. We are
left with C7 for which we obtain the OR-successor

{
A(PUQ),E(¬PBQ)

}
=

D1.

The AND-node C7 is pruned since it contains the eventuality formula
A(PUQ) which is not satisfiable. (Since C7 does not contain Q, we have
that D1 must be in the required acyclic subgraph that would imply that
A(PUQ) is satisfiable. However, since C7 is the only successor of D1,
there is no such acyclic subgraph.)

After removing C7 we can step-by-step remove the nodes D1, C3, and
D0. Since the resulting tableau does not contain an AND-node which
contains the formula

(

Q ∨
(
P ∧AXA(PUQ)

))

∧ E(¬PBQ),

it follows that the formula is unsatisfiable. Hence the negation of this
formula (the original formula given in the assignment) is valid.

2. Determine the positive normal form:

GFP → GF¬P

¬GFP ∨ GF¬P

FG¬P ∨ GF¬P

17

Then, replace the LTL connectives F and G with the CTL connective
AF and AG, respectively. We obtain the formula

AFAG¬P ∨ AGAF¬P .

This CTL formula is satisfiable if and only if the original LTL formula
is satisfiable. We can thus apply the CTL tableau method. The root of
the tableau is the OR-node

D0 = {AFAG¬P ∨ AGAF¬P}.

The AND-successors of D0:

C0 =
{
AFAG¬P ∨ AGAF¬P,AFAG¬P,AG¬P,¬P,AXAG¬P

}

C1 =
{
AFAG¬P ∨ AGAF¬P,AFAG¬P,AXAFAG¬P

}

C2 =
{
AFAG¬P ∨ AGAF¬P,AGAF¬P,AF¬P,

AXAGAF¬P,¬P
}

C3 =
{
AFAG¬P ∨ AGAF¬P,AGAF¬P,AF¬P,

AXAGAF¬P,AXAF¬P
}

The OR-successor of C0: D1 = {AG¬P}
The OR-successor of C1: D2 = {AFAG¬P}
The OR-successor of C2: D3 = {AGAF¬P}
The OR-successor of C3: D4 = {AGAF¬P,AF¬P}

The AND-successor of D1: C4 = {AG¬P,¬P,AXAG¬P}

The AND-successors of D2:

C5 = {AFAG¬P,AG¬P,¬P,AXAG¬P}

C6 = {AFAG¬P,AXAFAG¬P}

The AND-successors of D3:

C7 = {AGAF¬P,AF¬P,AXAGAF¬P,¬P}

C8 = {AGAF¬P,AF¬P,AXAGAF¬P,AXAF¬P}

The AND-successors of D4:

C9 = {AGAF¬P,AF¬P,AXAGAF¬P,¬P} = C7

C10 = {AGAF¬P,AF¬P,AXAGAF¬P,AXAF¬P} = C8

18

The OR-successor of C4: D5 = {AG¬P} = D1

The OR-successor of C5: D6 = {AG¬P} = D1

The OR-successor of C6: D7 = {AFAG¬P} = D2

The OR-successor of C7: D8 = {AGAF¬P} = D3

The OR-successor of C8: D9 = {AGAF¬P,AF¬P} = D4

The initial tableau T0:

D0

C0

C1 C2 C3

D1

D2 D3

D4

C4

C5 C6

C7

C8

Since the node C4 is not contradictory and does not contain any even-
tuality formulas, it remains in the final tableau. Thus the OR-node D1

will have a successor, and hence D1 will remain as well. All successors
of node C0 will then also remain. Furthermore, node C0 remains since
it is not contradictory and all of its eventuality formulas (there is only
one, AFAG¬P) are satisfiable in the initial tableau.

It follows that the final tableau obtained from T0 contains the AND-
node C0 which contains the formula AFAG¬P ∨ AGAF¬P . Hence
this CTL formula is satisfiable.

Using the nodes C0 and C4 we can now construct a model for the CTL
formula:

C0
// C4

tt

¬P ¬P

Since the CTL formula AFAG¬P ∨AGAF¬P is satisfiable, the origi-
nal LTL formula FG¬P ∨GF¬P ≡ GFP → GF¬P is also satisfiable.

19

