T-79.5101

Advanced Course in Computational Logic
Exercise Session 11

Solutions

1. \mathcal{M} :

a) $\mathcal{M}, a \not \vDash \mathbf{A}(P \mathbf{U} Q)$, since (for example) the full path (a, b, d, d, d, \ldots) starts from state a but does not go through any state $s \in S$ in which $\mathcal{M}, s \models Q$ holds.
b) A full path in a model is F-fair if and only if every $\varphi \in F$ is infinitely often true on the path.
Since $\{s \in S \mid \mathcal{M}, s \models R\}=\{f\}$, it follows that all F-fair paths in \mathcal{M} must visit state f infinitely often. Since f is not reachably from neither of the states c and d, there is no F-fair path that visits these two states. Hence every F-fair path in \mathcal{M} can be represented as

$$
(a, b, \underbrace{e, \ldots, e}_{n_{1} \text { times }}, f, a, b, \underbrace{e, \ldots, e}_{n_{2} \text { times }}, f, a, b, \underbrace{e, \ldots, e}_{n_{3} \text { times }}, f, \ldots)
$$

where $n_{1}, n_{2}, n_{3}, \ldots$ are (finite) positive integers. Especially, since n_{1} is finite and, furthermore, $\mathcal{M}, a \models P, \mathcal{M}, b \models P, \mathcal{M}, e \models P$ and $\mathcal{M}, f \models Q$ hold, it follows that $\mathcal{M}, a \models_{F} \mathbf{A}(P \mathbf{U} Q)$ holds.
c) $\mathcal{M}, a \models \mathbf{E G} P$ holds since there is the full path (a, b, e, e, e, \ldots) and for each state $s \in\{a, b, e\}$ we have $\mathcal{M}, s \models P$.
d) Notice that the path (a, b, e, e, e, \ldots) is the only full path in which P holds and which starts from a. However, this path is not F-fair since it does not visit the state f. Hence $\mathcal{M}, a \not \forall_{F}$ EG P.
2. \mathcal{M} :

Spring 2008
1.

Round	Visited states	Considered states	New states
1	$\{b\}$	$\{b\}$	$\{d, e\}$
2	$\{b, d, e\}$	$\{d, e\}$	$\{c\}$
3	$\{b, c, d, e\}$	$\{c\}$	\emptyset

We now know that $\mathbf{E}((P \rightarrow Q) \mathbf{U}(P \wedge Q))$ is true precisely in the set of states $\{b, c, d, e\}$

Finally, we can evaluate the formula $\mathbf{A X E}((P \rightarrow Q) \mathbf{U}(P \wedge Q))$: the formula is true in a state $s \in S$ if and only if $\mathbf{E}((P \rightarrow Q) \mathbf{U}(P \wedge Q))$ is true in all successors of s. Hence we arrive at
$\operatorname{AXE}((P \rightarrow Q) \mathbf{U}(P \wedge Q))$

3. \mathcal{M} :

For the evaluation we employ the CheckEG and CheckEU algorithms First, we have to express the formula using the operators $\mathbf{E U}$ and $\mathbf{E G}$

$$
\begin{aligned}
& \mathbf{A G}(Q \rightarrow \mathbf{A}(\mathbf{E F} P \mathbf{U A F} P)) \\
&=\mathbf{A G}(O \rightarrow \mathbf{A}(\mathbf{E}(T \mathbf{U} P) \mathbf{U}-\mathbf{E} \mathbf{I}
\end{aligned}
$$

$\equiv \mathbf{A G}(Q \rightarrow \mathbf{A}(\mathbf{E}(\mathbf{T} \mathbf{U} P) \mathbf{U} \neg \mathbf{E G} \neg P))$
$\equiv \mathbf{A G}(Q \rightarrow \neg \mathbf{E}((\neg \neg \mathbf{E G} \neg P) \mathbf{U}(\neg \mathbf{E}(T \mathbf{U} P) \wedge \neg \neg \mathbf{E G} \neg P)) \wedge \neg \mathbf{E G} \neg \neg \mathbf{E G} \neg P)$
$\equiv \mathbf{A G}(Q \rightarrow \neg \mathbf{E}((\mathbf{E G} \neg P) \mathbf{U}(\neg \mathbf{E}(\top \mathbf{U} P) \wedge \mathbf{E G} \neg P)) \wedge \neg \mathbf{E G E G} \neg P)$
$\equiv \neg \mathbf{E F} \neg(Q \rightarrow \neg \mathbf{E}((\mathbf{E G} \neg P) \mathbf{U}(\neg \mathbf{E}(\top \mathbf{U} P) \wedge \mathbf{E G} \neg P)) \wedge \neg \mathbf{E G E G} \neg P)$
$\equiv \neg \mathbf{E}(\top \mathbf{U} \neg(Q \rightarrow \neg \mathbf{E}((\mathbf{E G} \neg P) \mathbf{U}(\neg \mathbf{E}(T \mathbf{U} P) \wedge \mathbf{E G} \neg P)) \wedge \neg \mathbf{E G E G} \neg P))$
Then, sort the subformulas into a suitable order

$$
\begin{aligned}
& P, Q, \neg P, \text { EG } \neg P, \text { EGEG } \neg P, \neg \text { EGEG } \neg P \\
& \mathbf{E}(T \mathbf{U} P) \neg \mathbf{(}(T \mathbf{U} P) \neg \mathbf{E}(\tau \mathbf{U} P) \wedge \mathbf{E G} \neg P
\end{aligned}
$$

$\mathbf{E}((\mathbf{E G} \neg P) \mathbf{U}(\neg \mathbf{E}(\rceil \mathbf{U} P) \wedge \mathbf{E G} \neg P)), \neg \mathbf{E}((\mathbf{E G} \neg P) \mathbf{U}(\neg \mathbf{E}(\uparrow \mathbf{U} P) \wedge \mathbf{E G} \neg P))$
$\neg \mathbf{E}((\mathbf{E G} \neg P) \mathbf{U}(\neg \mathbf{E}(T \mathbf{U} P) \wedge \mathbf{E G} \neg P)) \wedge \neg \mathbf{E G E G} \neg P$,
$Q \rightarrow \neg \mathbf{E}((\mathbf{E G} \neg P) \mathbf{U}(\neg \mathbf{E}(\top \mathbf{U} P) \wedge \mathbf{E G} \neg P)) \wedge \neg \mathbf{E G E G} \neg P$,
$\neg(Q \rightarrow \neg \mathbf{E}((\mathbf{E G} \neg P) \mathbf{U}(\neg \mathbf{E}(\mathbf{T} \mathbf{U} P) \wedge \mathbf{E G} \neg P)) \wedge \neg \mathbf{E G E G} \neg P)$
$\mathbf{E}((\mathbf{U} \neg(Q \rightarrow \neg \mathbf{E}((\mathbf{E G} \neg P) \mathbf{U}(\neg \mathbf{E}((\mathbf{U} P) \wedge \mathbf{E G} \neg P)) \wedge \neg \mathbf{E G E G} \neg P)))$,
$\mathbf{E}(\top \mathbf{U} \neg(Q \rightarrow \neg \mathbf{E}((\mathbf{E G} \neg P) \mathbf{U}(\neg \mathbf{E}(\top \mathbf{U} P) \wedge \mathbf{E G} \neg P)) \wedge \neg \mathbf{E G E G} \neg P)$,

Since P is true in the states a and $c, \neg P$ is true in the states $\{b, d, e\}$. Now we can apply the algorithm CheckEG to evaluate EG $\neg P$. First, construct the restriction \mathcal{M}^{\prime} based on the states in which $\neg P$ is true.

Then, find the non-trivial strongly connected components (SCCs) of \mathcal{M}^{\prime}, and mark $\mathrm{EG} \neg P$ as true in all states belonging to one of the on-trivial SCCs.

Now, similarly as in the algorithm CheckEU, iteratively collect all the states that are predecessors of at least one state in the non-trivial SCCs of \mathcal{M}^{\prime}. Here the only non-trivial SCC of \mathcal{M}^{\prime} is $\{b, d\}$. Since the state e is not a predecessor of b or d, the CheckEG algorithm terminates immediately:

Round	Collected states	Considered states	New states
1	$\{b, d\}$	$\{b, d\}$	\emptyset

Hence we arrive at

Now determine the states in which the subformula EGEG $\neg P$ is true using CheckEG. We consider the restriction $\mathcal{M}^{\prime \prime}$ based on those states in which $\mathbf{E G} \neg P$ is true

$$
\begin{array}{cc}
\neg P, Q, \mathbf{E G} \neg P \\
\neg P, \neg Q, \mathbf{E G} \neg P & \stackrel{b}{d}
\end{array}
$$

The only non-trivial SCC of $\mathcal{M}^{\prime \prime}$ is $\{b, d\}$. Again, CheckEG terminates immediately.

Round	Collected states	Considered states	New states
1	$\{b, d\}$	$\{b, d\}$	\emptyset

We now know that the formula EGEG $\neg P$ is true in the states b and d, and hence $\neg \mathbf{E G E G} \neg P$ is true in the states a, c, and e.

Now evaluate the subformula $\mathbf{E}(T \mathbf{U} P)$ using CheckEU:

Round	Collected states	considered states	New states
1	$\{a, c\}$	$\{a, c\}$	$\{e\}$
2	$\{a, c, e\}$	$\{e\}$	$\{d\}$
3	$\{a, c, d, e\}$	$\{d\}$	$\{b\}$
4	$\{a, b, c, d, e\}$	$\{b\}$	\emptyset

Thus, the formula $\mathbf{E}(T \mathbf{U} P)$ is true in all states of \mathcal{M}, and therefore $\neg \mathbf{E}(T \mathbf{U} P)$ is false in all states. It follows that the conjunction $\neg \mathbf{E}(\top \mathbf{U} P) \wedge \mathbf{E G} \neg P$ is also false in all the states.
Then we again use CheckEU for considering $\mathbf{E}((\mathbf{E G} \neg P) \mathbf{U}(\neg \mathbf{E}(\top \mathbf{U} P) \wedge \mathbf{E G} \neg P))$. The algorithm terminates immediately, since the set of states from which we start from is empty by the above.

Round	Collected states	Considered states	New states
1	\emptyset	\emptyset	\emptyset

Thus the formula $\neg \mathbf{E}((\mathbf{E G} \neg P) \mathbf{U}(\neg \mathbf{E}(\top \mathbf{U} P) \wedge \mathbf{E G} \neg P))$ is true in all the states of \mathcal{M}. Since we already know that \neg EGEG $\neg P$ is true in the states a, c, and e, we can evaluate the conjunction

$$
\varphi=\neg \mathbf{E}((\mathbf{E G} \neg P) \mathbf{U}(\neg \mathbf{E}(T \mathbf{U} P) \wedge \mathbf{E G} \neg P)) \wedge \neg \mathbf{E G E G} \neg P
$$

in each state of the model:

(For clarity, only those subformulas are visible which are still needed.) Now the subformula $Q \rightarrow \varphi$:

The subformula $\neg(Q \rightarrow \varphi)$:

The subformula $\mathbf{E}(\top \mathbf{U} \neg(Q \rightarrow \varphi))$ using CheckEU:

Finally, we arrive at:

T-79.5101
Spring 2008
Advanced Course in Computational Logic
Exercise Session 12
Solutions

1. \mathcal{M} :

The closure of $\mathbf{X}(\neg P \mathbf{U} Q)$:
$\mathrm{CL}(\mathbf{X}(\neg P \mathbf{U} Q))=\{\mathbf{X}(\neg P \mathbf{U} Q), \neg \mathbf{X}(\neg P \mathbf{U} Q), \neg P \mathbf{U} Q, \mathbf{X} \neg(\neg P \mathbf{U} Q)$, $\neg(\neg P \mathbf{U} Q), \neg P, Q, \neg \mathbf{X} \neg(\neg P \mathbf{U} Q), P, \neg Q\}$

Now construct the atoms. Since $v(a, P)=v(a, Q)=$ false, we can construct the following atomic tableau:

The open branches in the tableau give us the sets of formulas

$$
\begin{aligned}
& K_{1}=\{\top, \neg P, \neg Q, \neg P \mathbf{U} Q, \mathbf{X}(\neg P \mathbf{U} Q), \neg \mathbf{X} \neg(\neg P \mathbf{U} Q)\} \\
& K_{2}=\{\top, \neg P, \neg Q, \neg(\neg P \mathbf{U} Q), \neg \mathbf{X}(\neg P \mathbf{U} Q), \mathbf{X} \neg(\neg P \mathbf{U} Q)\}
\end{aligned}
$$

Hence for state a we obtain the atoms $\left(a, K_{1}\right)$ and (a, K_{2}).
Since the valuation for the formulas P and Q in state c is identical to the valuation in state a, for state c we obtain the atoms $\left(c, K_{1}\right)$ and (c, K_{2})

Now consider state b.

The open branches in the tableau give us the sets of formulas

$$
\begin{aligned}
& K_{3}=\{\top, P, Q, \neg P \mathbf{U} Q, \mathbf{X}(\neg P \mathbf{U} Q), \neg \mathbf{X} \neg(\neg P \mathbf{U} Q)\} \\
& K_{4}=\{\top, P, Q, \neg P \mathbf{U} Q, \neg \mathbf{X}(\neg P \mathbf{U} Q), \mathbf{X} \neg(\neg P \mathbf{U} Q)\}
\end{aligned}
$$

Thus for b we have the atoms $\left(b, K_{3}\right)$ and $\left(b, K_{4}\right)$.
Then consider state d.

Now we arrive at the sets of formulas

$$
\begin{aligned}
& K_{5}=\{\top, P, \neg Q, \neg(\neg P \mathbf{U} Q), \mathbf{X}(\neg P \mathbf{U} Q), \neg \mathbf{X} \neg(\neg P \mathbf{U} Q)\} \\
& K_{6}=\{\top, P, \neg Q, \neg(\neg P \mathbf{U} Q), \neg \mathbf{X}(\neg P \mathbf{U} Q), \mathbf{X} \neg(\neg P \mathbf{U} Q)\}
\end{aligned}
$$

(Two open branches give us K_{6} !) Thus for d we have the atoms (d, K_{5}) and $\left(d, K_{6}\right)$.
Then, we construct a graph $G=(N, E)$. The set of nodes N is the set of atoms we have just obtained, that is,

$$
N=\left\{\left(a, K_{1}\right),\left(a, K_{2}\right),\left(b, K_{3}\right),\left(b, K_{4}\right),\left(c, K_{1}\right),\left(c, K_{2}\right),\left(d, K_{5}\right),\left(d, K_{6}\right)\right\} .
$$

The set of edges E is defined as follows: there is an edge from the atom (s, K) to atom (s^{\prime}, K^{\prime}) if and only if
(a) $s R s^{\prime}$ (in model \mathcal{M}), and
(b) for each formula $\mathbf{X} \varphi \in \operatorname{CL}(\mathbf{X}(\neg P \mathbf{U} Q))$ we have $\mathbf{X} \varphi \in K$ if and only if $\varphi \in K^{\prime}$.
To check condition (b) we can first form a "compatibility relation" over the atoms:

	K_{1}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}
K_{1}	\times		\times	\times		
K_{2}		\times			\times	\times
K_{3}	\times		\times	\times		
K_{4}		\times			\times	\times
K_{5}	\times		\times	\times		
K_{6}		\times			\times	\times

In the table, there is a tick in the j th column of the i th row if and only if the condition " $\mathbf{X} \varphi \in K_{i}$ if and only if $\varphi \in K_{j}$ " holds for each $\mathbf{X} \varphi \in \mathrm{CL}(\mathbf{X}(\neg P \mathbf{U} Q))$. For example, this is fulfilled by $\left(K_{1}, K_{3}\right)$ since $\mathbf{X}(\neg P \mathbf{U} Q) \in K_{1}$ is the only formula in K_{1} of the form $\mathbf{X} \varphi$ and we have $\neg P \mathbf{U} Q \in K_{3}$.
The conditions (a) and (b) can now be checked using R and this table. As an example, consider the atom $\left(b, K_{3}\right)$. Now any atom in $\left\{\left(a, K_{1}\right),\left(a, K_{2}\right),\left(d, K_{5}\right),\left(d, K_{6}\right)\right\}$ together with $\left(b, K_{3}\right)$ fulfills condition (a). However, since condition (b) does not hold for any of $\left(K_{3}, K_{2}\right)$, $\left(K_{3}, K_{5}\right),\left(K_{3}, K_{6}\right)$, the only edge from $\left(b, K_{3}\right)$ is $\left\langle\left(b, K_{3}\right),\left(a, K_{1}\right)\right\rangle$
In the end we arrive at the graph G :

In order to evaluate $\mathbf{E X}(\neg P \mathbf{U} Q)$ in state a, we check whether there is a path x in G fulfilling the following conditions: (i) x begins at one of the atoms $(a, K)\left(K \in\left\{K_{1}, \ldots, K_{6}\right\}\right)$, (ii) $\mathbf{X}(\neg P \mathbf{U} Q)$ is in K, and (iii) x leads to a self-fulfilling non-trivial SCC of G.
The only non-trivial SCC of G is

$$
C=\left\{\left(a, K_{1}\right),\left(a, K_{2}\right),\left(b, K_{3}\right),\left(b, K_{4}\right),\left(c, K_{2}\right),\left(d, K_{5}\right),\left(d, K_{6}\right)\right\}
$$

This SCC is also self-fulfilling, since the only formula of the form $\varphi \mathbf{U} \psi$ appearing in the atoms of C is $\neg P \mathbf{U} Q$, and C includes an atom for which $Q \in K_{3}$ holds ($\left(b, K_{3}\right)$, for example)

Since $\left(a, K_{1}\right) \in C$, the self-fulfilling non-trivial SCC C is reachable from $\left(a, K_{1}\right)$. Thus, since $\mathbf{X}(\neg P \mathbf{U} Q) \in K_{1}$, we know that $\mathcal{M}, a \models$ $\mathbf{E X}(\neg P \mathbf{U} Q)$ holds.
2. \mathcal{M} :

$\mathcal{M}, a \models \mathbf{A F G} P$ iff $\mathcal{M}, a \models \neg \mathbf{E} \neg \mathbf{F G} P$ iff $\mathcal{M}, a \not \vDash \mathbf{E} \neg \mathbf{F G} P$. Hence we will investigate whether $\mathcal{M}, a \models \mathbf{E} \neg \mathbf{F G} P$ holds. First, rewrite $\neg \mathbf{F G} P$ using only the temporal connectives \mathbf{X} and \mathbf{U}.

$$
\begin{aligned}
\neg \mathbf{F G} P & \equiv \neg \mathbf{F} \neg \mathbf{F} \neg P \\
& \equiv \neg \mathbf{F} \neg(\top \mathbf{U} \neg P) \\
& \equiv \neg(\top \mathbf{U} \neg(\top \mathbf{U} \neg P))
\end{aligned}
$$

The closure of $\neg(\top \mathbf{U} \neg(\top \mathbf{U} \neg P))$:

$$
\begin{aligned}
\mathrm{CL}(\neg(\top \mathbf{U} \neg(\top \mathbf{U} \neg P)))= & \{\neg(\top \mathbf{U} \neg(T \mathbf{U} \neg P)), \top \mathbf{U} \neg(\mathrm{T} \mathbf{U} \neg P),, \\
& \top, \neg(\top \mathbf{U} \neg P), \mathbf{X}(\top \mathbf{U} \neg(\top \mathbf{U} \neg P)), \neg \top, \\
& \top \mathbf{U} \neg P, \neg \mathbf{X}(\top \mathbf{U} \neg(\top \mathbf{U} \neg P)), \neg P, \\
& \mathbf{X}(\top \mathbf{U} \neg P), \mathbf{X} \neg(\top \mathbf{U} \neg(\top \mathbf{U} \neg P)), P, \\
& \neg \mathbf{X}(\top \mathbf{U} \neg P), \neg \mathbf{X} \neg(\top \mathbf{U} \neg(\top \mathbf{U} \neg P)), \\
& \mathbf{X} \neg(\top \mathbf{U} \neg P), \neg \mathbf{X} \neg(\top \mathbf{U} \neg P)\}
\end{aligned}
$$

Construct the atoms. Since $v(a, P)=$ false, for state a we can construct the atomic tableau

where the branch T_{1} is

and the branch T_{2}

From the open branches we obtain

$$
\begin{aligned}
& K_{1}=\{\top, \neg P, \top \mathbf{U} \neg P, \top \mathbf{U} \neg(\top \mathbf{~} \mathbf{U} \neg P), \mathbf{X}(\top \mathbf{U} \neg(\top \mathbf{U} \neg P)), \\
& K_{2}=\{\top, \neg P, \top \mathbf{U} \neg P, \top \mathbf{U} \neg(\top \mathbf{U} \neg P), \mathbf{X}(\top \mathbf{U} \neg(\top \mathbf{U} \neg P)), \\
& \neg \mathbf{X} \neg(\mathrm{T} \mathbf{U} \neg(\mathbf{T} \mathbf{U} \neg P)) \neg \mathbf{X}(\mathrm{T} \mathbf{U} \neg P) \mathbf{X} \neg(T \mathbf{U} \\
& K_{3}=\{\top, \neg P, \top \mathbf{U} \neg P, \neg(\top \mathbf{U} \neg(\top \mathbf{U} \neg P)), \neg \mathbf{X}(\top \mathbf{U} \neg(\top \mathbf{U} \neg P)), \\
& K_{4}=\left\{\begin{array}{l}
\mathbf{X} \neg(\top \mathbf{U} \neg(\top \mathbf{U} \neg P)), \mathbf{X}(\top \mathbf{U} \neg P), \neg \mathbf{X} \neg(\top \mathbf{U} \neg P)\} \\
\{\top, \neg P, \top \mathbf{U} \neg P, \neg(T \mathbf{U} \neg(\top \mathbf{U} \neg P)), \neg \mathbf{X}(\top \mathbf{U} \neg(\top \mathbf{U} \neg P)
\end{array}\right. \\
& \begin{aligned}
K_{4}= & \{\top, \neg P, \top \mathbf{U} \neg P, \neg(\top \mathbf{U} \neg(\top \mathbf{U} \neg P)), \neg \mathbf{X}(\top \mathbf{U} \neg(\top \mathbf{U} \neg P)), \\
& \mathbf{X} \neg(\top \mathbf{U} \neg(\top \mathbf{U} \neg P)), \neg \mathbf{X}(\top \mathbf{U} \neg P), \mathbf{X} \neg(\top \mathbf{U} \neg P)\}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
K_{5}= & \{\top, \neg P, \top \mathbf{U} \neg P, \mathbf{X}(\top \mathbf{U} \neg P), \neg \mathbf{X} \neg(\top \mathbf{U} \neg P), \top \mathbf{U} \neg(\top \mathbf{U} \neg P), \\
& \mathbf{X}(\top \mathbf{U} \neg(\top \mathbf{U} \neg P)), \neg \mathbf{X} \neg(\top \mathbf{U} \neg(\top \mathbf{U} \neg P))\} \\
K_{6}= & \{\top, \neg P, \top \mathbf{U} \neg P, \mathbf{X}(\top \mathbf{U} \neg P), \neg \mathbf{X} \neg(\top \mathbf{U} \neg P), \neg(\top \mathbf{U} \neg(\top \mathbf{U} \neg P)), \\
& \neg \mathbf{X}(\top \mathbf{U} \neg(\top \mathbf{U} \neg P)), \mathbf{X} \neg(\top \mathbf{U} \neg(\top \mathbf{U} \neg P))\}
\end{aligned}
$$

Thus we obtain the atoms $\left(a, K_{1}\right),\left(a, K_{2}\right),\left(a, K_{3}\right),\left(a, K_{4}\right),\left(a, K_{5}\right)$, and a, K_{6}).

Since $v(b, P)=v(c, P)=$ true, for b and c we can construct the atomic tableau

where the branch T_{3} is

and the branch T_{4}

From the open branches we obtain

$$
\begin{aligned}
& K_{7}=\{\top, P, \top \mathbf{U} \neg P, \mathbf{X}(\top \mathbf{U} \neg P), \neg \mathbf{X} \neg(\top \mathbf{U} \neg P), \top \mathbf{U} \neg(\top \mathbf{U} \neg P), \\
& \mathbf{X}(\top \mathbf{U} \neg(\top \mathbf{U} \neg P)), \neg \mathbf{X} \neg(\top \mathbf{U} \neg(\top \mathbf{U} \neg P))\} \\
& K_{8}=\{\top, P, \top \mathbf{U} \neg P, \mathbf{X}(\top \mathbf{U} \neg P), \neg \mathbf{X} \neg(\top \mathbf{U} \neg P), \neg(\top \mathbf{U} \neg(\top \mathbf{U} \neg P)) \text {, } \\
& \neg \mathbf{X}(\top \mathbf{U} \neg(\top \mathbf{U} \neg P)), \mathbf{X} \neg(\top \mathbf{U} \neg(\top \mathbf{U} \neg P))\} \\
& K_{9}=\{\top, P, \neg(\top \mathbf{U} \neg P), \neg \mathbf{X}(\top \mathbf{U} \neg P), \mathbf{X} \neg(\top \mathbf{U} \neg P), \top \mathbf{U} \neg(\top \mathbf{U} \neg P), \\
& \mathbf{X}(\mathrm{T} \mathbf{U} \neg(\mathrm{~T} \mathbf{U} \neg P)), \neg \mathbf{X} \neg(\mathrm{T} \mathbf{U} \neg(\mathrm{~T} \mathbf{U} \neg P))\} \\
& K_{10}=\{\top, P, \neg(\top \mathbf{U} \neg P), \neg \mathbf{X}(\top \mathbf{U} \neg P), \mathbf{X} \neg(\top \mathbf{U} \neg P), \top \mathbf{U} \neg(\top \mathbf{U} \neg P), \\
& \neg \mathbf{X}(\top \mathbf{U} \neg(\mathrm{T} \mathbf{U} \neg P)), \mathbf{X} \neg(\mathrm{T} \mathbf{U} \neg(\top \mathbf{U} \neg P))
\end{aligned}
$$

Thus we obtain the atoms $\left(b, K_{7}\right),\left(b, K_{8}\right),\left(b, K_{9}\right),\left(b, K_{10}\right),\left(c, K_{7}\right)$, $\left(c, K_{8}\right),\left(c, K_{9}\right)$, and $\left(c, K_{10}\right)$

Now we have the following "compatibility relation":

	K_{1}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	K_{7}	K_{8}	K_{9}	K_{10}
K_{1}	\times	\times			\times		\times			
K_{2}									\times	\times
K_{3}			\times	\times		\times		\times		
K_{4}										
K_{5}	\times	\times			\times		\times			
K_{6}			\times	\times		\times		\times		
K_{7}	\times	\times			\times		\times			
K_{8}			\times	\times		\times		\times		
K_{9}									\times	\times
K_{10}										

The graph G :

The non-trivial SCCs of G

$$
\begin{aligned}
& C_{1}=\left\{\left(a, K_{1}\right),\left(a, K_{5}\right)\right\} \\
& C_{2}=\left\{\left(a, K_{3}\right),\left(a, K_{6}\right)\right\} \\
& C_{3}=\left\{\left(b, K_{7}\right),\left(c, K_{7}\right)\right\} \\
& C_{4}=\left\{\left(b, K_{8}\right),\left(c, K_{8}\right)\right\} \\
& C_{5}=\left\{\left(b, K_{9}\right),\left(c . K_{0}\right)\right\}
\end{aligned}
$$

Out of these, C_{2} and C_{5} are self-fulfilling. Now check whether C_{2} or C_{5} is reachable from some atom (a, K), where $\neg(\top \mathbf{U} \neg(\top \mathbf{U} \neg P)) \in K$. Since the formula $\neg(\top \mathbf{U} \neg(\top \mathbf{U} \neg P))$ is in K_{6} and C_{2} is reachable from
(a, K_{6}) (since $\left(a, K_{6}\right) \in C_{2}$), it follows that $\mathcal{M}, a \models \mathbf{E} \neg \mathbf{F G} P$ holds. Thus $\mathcal{M}, a \models$ AFG P does not hold

T-79.5101
Advanced Course in Computational Logic
Exercise Session 13
Solutions

1. We start from the negation of the given formula,

$$
\neg((Q \vee(P \wedge \mathbf{A X A}(P \mathbf{U} Q))) \rightarrow \mathbf{A}(P \mathbf{U} Q))
$$

and translate it to positive normal form:

$$
\begin{aligned}
& (Q \vee(P \wedge \mathbf{A X A}(P \mathbf{U} Q))) \wedge \neg \mathbf{A}(P \mathbf{U} Q) \\
& (Q \vee(P \wedge \mathbf{A X A}(P \mathbf{U} Q))) \wedge \mathbf{E}(\neg P \mathbf{B} Q)
\end{aligned}
$$

Now construct the CTL tableau. We start with the OR-node

$$
D_{0}=\{(Q \vee(P \wedge \mathbf{A X A}(P \mathbf{U} Q))) \wedge \mathbf{E}(\neg P \mathbf{B} Q)\},
$$

the AND-successors of which are

$$
\begin{aligned}
C_{0}=\{ & (Q \vee(P \wedge \mathbf{A X A}(P \mathbf{U} Q))) \wedge \mathbf{E}(\neg P \mathbf{B} Q), \\
& Q \vee(P \wedge \mathbf{A X A}(P \mathbf{U} Q)), \mathbf{E}(\neg P \mathbf{B} Q), \\
& Q, \neg Q, \neg P \vee \mathbf{E X E}(\neg P \mathbf{B} Q), \neg P\} \\
C_{1}=\{ & (Q \vee(P \wedge \mathbf{A X A}(P \mathbf{U} Q))) \wedge \mathbf{E}(\neg P \mathbf{B} Q), \\
& Q \vee(P \wedge \mathbf{A X A}(P \mathbf{U} Q)), \mathbf{E}(\neg P \mathbf{B} Q), \\
& Q, \neg Q, \neg P \vee \mathbf{E X E}(\neg P \mathbf{B} Q), \mathbf{E X E}(\neg P \mathbf{B} Q)\} \\
C_{2}=\{ & (Q \vee(P \wedge \mathbf{A X A}(P \mathbf{U} Q))) \wedge \mathbf{E}(\neg P \mathbf{B} Q), \\
& Q \vee(P \wedge \mathbf{A X A}(P \mathbf{U} Q)), \mathbf{E}(\neg P \mathbf{B} Q), \\
& P \wedge \mathbf{A X A}(P \mathbf{U} Q), P, \mathbf{A X A}(P \mathbf{U} Q), \neg Q, \\
& \neg P \vee \mathbf{E X E}(\neg P \mathbf{B} Q), \neg P\} \\
C_{3}=\{ & (Q \vee(P \wedge \mathbf{A X A}(P \mathbf{U} Q))) \wedge \mathbf{E}(\neg P \mathbf{B} Q), \\
& Q \vee(P \wedge \mathbf{A X A}(P \mathbf{U} Q)), \mathbf{E}(\neg P \mathbf{B} Q), \\
& P \wedge \mathbf{A X A}(P \mathbf{U} Q), P, \mathbf{A X A}(P \mathbf{U} Q), \neg Q, \\
& \neg \\
& P \vee \mathbf{E X E}(\neg P \mathbf{B} Q), \mathbf{E X E}(\neg P \mathbf{B} Q)\}
\end{aligned}
$$

The nodes C_{0}, C_{1}, and C_{2} can be pruned, since they are contradictory (contain the formulas ϕ and $\neg \phi$ for some ϕ). (In other words, we can in fact prune contradictory AND-nodes already when constructing ANDnodes without affecting the end result! Left as an exercise.)

Since the node C_{3} contains the formulas $\mathbf{A X A}(P \mathbf{U} Q)$ and $\mathbf{E X E}(\neg P \mathbf{B} Q)$, for C_{3} we have the OR-successor $D_{1}=\{\mathbf{A}(P \mathbf{U} Q), \mathbf{E}(\neg P \mathbf{B} Q)\}$.
The AND-successors of D_{1} :

$$
\begin{aligned}
& C_{4}=D_{1} \cup\{Q, \neg Q, \neg P \vee \operatorname{EXE}(\neg P \mathbf{B} Q), \neg P\} \\
& C_{5}=D_{1} \cup\{Q, \neg Q, \neg P \vee \operatorname{EXE}(\neg P \mathbf{B} Q), \mathbf{E X E}(\neg P \mathbf{B} Q)\} \\
& C_{6}=D_{1} \cup\{P \wedge \mathbf{A X A}(P \mathbf{U} Q), P, \mathbf{A X A}(P \mathbf{U} Q), \neg Q \text {, } \\
& \neg P \vee \operatorname{EXE}(\neg P \mathbf{B} Q), \neg P\} \\
& C_{7}=D_{1} \cup\{P \wedge \mathbf{A X A}(P \mathbf{U} Q), P, \mathbf{A X A}(P \mathbf{U} Q), \neg Q, \\
& \neg P \vee \operatorname{EXE}(\neg P \mathbf{B} Q), \operatorname{EXE}(\neg P \mathbf{B} Q)\}
\end{aligned}
$$

The nodes C_{4}, C_{5}, and C_{6} are contradictory and hence pruned. We are left with C_{7} for which we obtain the OR-successor $\{\mathbf{A}(P \mathbf{U} Q), \mathbf{E}(\neg P \mathbf{B} Q)\}=$ D_{1}.
The AND-node C_{7} is pruned since it contains the eventuality formula $\mathbf{A}(P \mathbf{U} Q)$ which is not satisfiable. (Since C_{7} does not contain Q, we have that D_{1} must be in the required acyclic subgraph that would imply that $\mathbf{A}(P \mathbf{U} Q)$ is satisfiable. However, since C_{7} is the only successor of D_{1}, there is no such acyclic subgraph.)
After removing C_{7} we can step-by-step remove the nodes D_{1}, C_{3}, and D_{0}. Since the resulting tableau does not contain an AND-node which contains the formula

$$
(Q \vee(P \wedge \mathbf{A X A}(P \mathbf{U} Q))) \wedge \mathbf{E}(\neg P \mathbf{B} Q)
$$

it follows that the formula is unsatisfiable. Hence the negation of this formula (the original formula given in the assignment) is valid.
2. Determine the positive normal form:

$$
\begin{aligned}
& \mathbf{G F} P \rightarrow \mathbf{G F} \neg P \\
& \neg \mathbf{G F} P \vee \mathbf{G F} \neg P \\
& \mathbf{F G} \neg P \vee \mathbf{G F} \neg P
\end{aligned}
$$

Then, replace the LTL connectives \mathbf{F} and \mathbf{G} with the CTL connective $\mathbf{A F}$ and $\mathbf{A G}$, respectively. We obtain the formula

```
AFAGG}\negP\vee\mathrm{ AGAF }\neg
```

This CTL formula is satisfiable if and only if the original LTL formula is satisfiable. We can thus apply the CTL tableau method. The root of the tableau is the OR-node

$$
D_{0}=\{\mathbf{A F A G} \neg P \vee \mathbf{A G A F} \neg P\} .
$$

The AND-successors of D_{0} :

$$
\left.\begin{array}{rl}
C_{0}= & \{\mathbf{A F A G} \neg P \vee \mathbf{A G A F} \neg P, \mathbf{A F A G} \neg P, \mathbf{A G} \neg P, \neg P, \mathbf{A X A G} \neg P\} \\
C_{1}= & \{\mathbf{A F A G} \neg P \vee \mathbf{A G A F} \neg P, \mathbf{A F A G} \neg P, \mathbf{A X A F A G} \neg P\} \\
C_{2}= & \{\mathbf{A F A G} \neg P \vee \mathbf{A G A F} \neg P, \mathbf{A G A F} \neg P, \mathbf{A F} \neg P, \\
& \mathbf{A X A G A F} \neg P, \neg P\} \\
C_{3}= & \{\mathbf{A F A G} \neg P \vee \mathbf{A G A F} \neg P, \mathbf{A G A F} \neg P, \mathbf{A F} \neg P, \\
& \mathbf{A X A G A F} \neg P, \mathbf{A X A F} \neg P\}
\end{array}\right\} \begin{aligned}
& \text { The OR-successor of } C_{0}: D_{1}=\{\mathbf{A G} \neg P\} \\
& \text { The OR-successor of } C_{1}: D_{2}=\{\mathbf{A F A G} \neg P\} \\
& \text { The OR-successor of } C_{2}: D_{3}=\{\mathbf{A G A F} \neg P\} \\
& \text { The OR-successor of } C_{3}: D_{4}=\{\mathbf{A G A F} \neg P, \mathbf{A F} \neg P\} \\
& \text { The AND-successor of } D_{1}: C_{4}=\{\mathbf{A G} \neg P, \neg P, \mathbf{A X A G} \neg P\} \\
& \text { The AND-successors of } D_{2}: \\
& \qquad C_{5}=\{\mathbf{A F A G} \neg P, \mathbf{A G} \neg P, \neg P, \mathbf{A X A G} \neg P\} \\
& \quad C_{6}=\{\mathbf{A F A G} \neg P, \mathbf{A X A F A G} \neg P\}
\end{aligned}
$$

The AND-successors of D_{3} :

$$
\begin{aligned}
& C_{7}=\{\mathbf{A G A F} \neg P, \mathbf{A F} \neg P, \mathbf{A X A G A F} \neg P, \neg P\} \\
& C_{8}=\{\mathbf{A G A F} \neg P, \mathbf{A F} \neg P, \mathbf{A X A G A F} \neg P, \mathbf{A X A F} \neg P\}
\end{aligned}
$$

The AND-successors of D_{4} :

$$
\begin{aligned}
C_{9} & =\{\mathbf{A G A F} \neg P, \mathbf{A F} \neg P, \mathbf{A X A G A F} \neg P, \neg P\}=C_{7} \\
C_{10} & =\{\mathbf{A G A F} \neg P, \mathbf{A F} \neg P, \mathbf{A X A G A F} \neg P, \mathbf{A X A F} \neg P\}=C_{8}
\end{aligned}
$$

The OR-successor of $C_{4}: D_{5}=\{\mathbf{A G} \neg P\}=D_{1}$
The OR-successor of $C_{5}: D_{6}=\{\mathbf{A G} \neg P\}=D_{1}$
The OR-successor of $C_{6}: D_{7}=\{$ AFAG $\neg P\}=D_{2}$
The OR-successor of $C_{7}: D_{8}=\{\mathbf{A G A F} \neg P\}=D_{3}$
The OR-successor of $C_{8}: D_{9}=\{\mathbf{A G A F} \neg P, \mathbf{A F} \neg P\}=D_{4}$
The initial tableau T_{0} :

Since the node C_{4} is not contradictory and does not contain any eventuality formulas, it remains in the final tableau. Thus the OR-node D_{1} will have a successor, and hence D_{1} will remain as well. All successors of node C_{0} will then also remain. Furthermore, node C_{0} remains since it is not contradictory and all of its eventuality formulas (there is only one, AFAG $\neg P$) are satisfiable in the initial tableau.
It follows that the final tableau obtained from T_{0} contains the ANDode C_{0} which contains the formula $\mathbf{A F A G} \neg P \vee \mathbf{A G A F} \neg P$. Hence this CTL formula is satisfiable.
Using the nodes C_{0} and C_{4} we can now construct a model for the CTL formula:

Since the CTL formula AFAG $\neg P \vee$ AGAF $\neg P$ is satisfiable, the original LTL formula $\mathbf{F G} \neg P \vee \mathbf{G F} \neg P \equiv \mathbf{G F} P \rightarrow \mathbf{G F} \neg P$ is also satisfiable.

