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Advanced Course in Computational Logic

Exercise Session 1

Solutions

1. One can use analytic tableaux for finding a satisfying truth assign-
ment for any satisfiable propositional logic formula by constructing a
complete tableau starting from the given formula in the root. The set
of atomic formulas in each of the open branches in such a complete
tableau describes a satisfying truth assignment for the formula.

a)
1. ¬

(

(P → Q) → (Q→ P )
)

2. P → Q (1)
3. ¬(Q→ P ) (1)
4. Q (3)
5. ¬P (3)
6. ¬P (2) 7. Q (2)

In this complete tableau both of the open branches describe the
same satisfying truth assignment, M = {Q}.

b)

1.
(

(P ∨ ¬R) ↔ R
)

∧ (P → Q)
2. (P ∨ ¬R) ↔ R (1)
3. P → Q (1)
4. (P ∨ ¬R) ∧ R (2) 5. ¬(P ∨ ¬R) ∧ ¬R (2)
11. P ∨ ¬R (4) 6. ¬(P ∨ ¬R) (5)
12. R (4) 7. ¬R (5)
13. P (11) 14. ¬R (11) 8. ¬P (6)
15. ¬P (3) 16. Q (3) × 9. ¬¬R (6)

× 10. R (9)
×

The only single branch in this complete tableau describes the sa-
tisfying truth assignment M = {P,Q,R}.
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2. One can also use tableaux for investigating whether a given propositio-
nal logic formula φ is a logical consequence of a given set of proposi-
tional formulas Σ. Starting from the root which, in addition to all the
formulas in Σ, contains ¬φ, construct a complete tableau. If the tableau
is closed, then φ is a logical consequence of Σ. On the other hand, any
open branch in a complete tableau describes a counterexample for the
logical consequence (a truth assignment that satisfies all the formulas
in Σ but which does not satisfy φ).

1. Q→ P
2. R → (P ∧Q)
3. P → (Q ∧ R)
4. ¬¬Q
5. Q (4)
6. ¬Q (1) 7. P (1)

× 8. ¬P (3) 9. Q ∧R (3)
× 10. Q (9)

11. R (9)
12. ¬R (2) 13. P ∧Q (2)

× 14. P (13)
15. Q (13)

Since we have a complete tableau with an open branch, the formula
¬Q is not a logical consequence of the given set of formulas Σ. From
the open branch we obtain the countermodel M = {P,Q,R}.

3. A propositional logic formula is in conjunctive normal form (CNF) if it
is of the form

(L1

1
∨ · · · ∨ L1

n1
) ∧ · · · ∧ (Lm

1
∨ · · · ∨ Lm

nm

),

where each of the formulas Lj
i is a literal (an atomic formula or its

negation).

The disjunctive normal form (DNF) is

(L1

1
∧ · · · ∧ L1

n1
) ∨ · · · ∨ (Lm

1
∧ · · · ∧ Lm

nm

).

One can apply tableaux to obtain the DNF of an arbitrary formula
φ. Determine all satisfying truth assignments for φ by constructing a
complete tableau with φ in the root, and then take the disjunction of
these assignments.
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1. (P → Q) → (P ∨Q)
2. ¬(P → Q) (1) 3. P ∨Q (1)
4. P (2) 6. P (3) 7. Q (3)
5. ¬Q (2)

From this tableau we obtain the DNF (P ∧¬Q)∨P ∨Q, which can be
simplified further to P ∨Q.

For determining the CNF of φ, first form the DNF of ¬φ:

1. ¬
(

(P → Q) → (P ∨Q)
)

2. P → Q (1)
3. ¬(P ∨Q) (1)
4. ¬P (3)
5. ¬Q (3)
6. ¬P (2) 7. Q (2)

×

Thus the DNF of the formula’s negation

¬
(

(P → Q) → (P ∨Q)
)

is
¬P ∧ ¬Q.

The CNF of the original formula φ is then obtained by negating the
DNF of ¬φ and applying De Morgan’s rules. Now, the CNF of the
formula

(P → Q) → (P ∨Q)

is
¬(¬P ∧ ¬Q) ≡ P ∨Q.

(In this example the CNF and DNF of the formula coincide. However,
this does not hold in general.)
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4. a)

1. ∃x1∃x2P (x1, x2) ∧ ∀x1∀x2

(

P (x1, x2) → P (x2, x1)
)

2. ∃x1∃x2P (x1, x2) (1)
3. ∀x1∀x2

(

P (x1, x2) → P (x2, x1)
)

(1)
4. ∃x2P (c, x2) (2, x1/c)
5. P (c, d) (4, x2/d)
6. ∀x2

(

P (c, x2) → P (x2, c)
)

(3, x1/c)
7. P (c, d) → P (d, c) (6, x2/d)
8. ¬P (c, d) (7) 9. P (d, c) (7)

× 10. ∀x2

(

P (d, x2) → P (x2, d)
)

(3, x1/d)
11. P (d, c) → P (c, d) (10, x2/c)
12. ¬P (d, c) (11) 13. P (c, d) (11)

× 14. P (c, c) → P (c, c) (6, x2/c)
15. P (d, d) → P (d, d) (10, x2/d)
16. ¬P (c, c) (14) 17. P (c, c) (14)
18. ¬P (d, d) (15) 19. P (d, d) (15) 20. ¬P (d, d) (15) 21. P (d, d) (15)

In this complete tableau there are four open branches. Based on
each of these branches we can now construct a structure which
gives a model for the given predicate logic formula in the root
of the tableau. We’ll now construct a structure A based on the
leftmost open branch. Define the universe

A = {1, 2},

and

cA = 1, dA = 2 sekä PA = {〈1, 2〉, 〈2, 1〉}.

Let’s check that the given formula is true in the structure A. Since
e.g. 〈1, 2〉 = 〈cA, dA〉 ∈ PA, we have A |= P (c, d), and hence

A |= ∃x1∃x2P (x1, x2)

holds. On the other hand

A |= ∀x1∀x2(P (x1, x2) → P (x2, x1)),

holds as well since

A |= P (c, c) → P (c, c),

A |= P (c, d) → P (d, c),

A |= P (d, c) → P (c, d) and

A |= P (d, d) → P (d, d),
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and cA = 1, dA = 2, 〈cA, cA〉 = 〈1, 1〉 6∈ PA (and hence A 6|=
P (c, c)), 〈cA, dA〉 = 〈1, 2〉 ∈ PA (and hence A |= P (c, d)), 〈dA, cA〉 =
〈2, 1〉 ∈ PA (and hence A |= P (d, c)), and 〈dA, dA〉 = 〈2, 2〉 6∈ PA

(A 6|= P (d, d)).

b) In this case there is no finite complete tableau; it turns out that the
tableau rules force us to repeatedly introduce new constants, which
then have to be repeatedly applied to the universally quantified
formulas generated in the tableau.

(This exemplifies the semi-decidability of predicate logic: there is
no systematic method using which, given an arbitrary predica-
te logic formula, one could either find a model or determine the
formula as unsatisfiable in finitely many steps.)

However, the formula given in the exercise is true for example in
the following structure A:

Define the universe A = {1}. Additionally, we need a constant c
and predicate P such that

cA = 1 and PA = {〈1, 1〉}.

Let’s check that

A |= ∀x1∃x2P (x1, x2) ∧ ∀x1∀x2∀x3(P (x1, x2) ∧ P (x2, x3) → P (x1, x3))

holds. Since there is a single element in the universe (cA = 1) and
〈1, 1〉 ∈ P (and hence A |= P (c, c)),

A |= ∀x1∃x2P (x1, x2)

holds. For the same reason

A |= ∀x1∀x2∀x3(P (x1, x2) ∧ P (x2, x3) → P (x1, x3)),

since
A |= P (c, c) ∧ P (c, c) → P (c, c).
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5. a)

1. ¬
(

(

∀xP (x) ∧ ∀xQ(x)
)

→ ∀x
(

P (x) ∨Q(x)
)

)

2. ∀xP (x) ∧ ∀xQ(x) (1)
3. ¬∀x

(

P (x) ∨Q(x)
)

(1)
4. ∀xP (x) (2)
5. ∀xQ(x) (2)
6. ¬

(

P (c) ∨Q(c)
)

(3, x/c)
7. ¬P (c) (6)
8. ¬Q(c) (6)
9. P (c) (4, x/c)

×

b)
1. ¬∃y

(

∃xP (x) → P (y)
)

2. ¬
(

∃xP (x) → P (c)
)

(1, y/c)
3. ∃xP (x) (2)
4. ¬P (c) (2)
5. P (d) (3, x/d)
6. ¬

(

∃xP (x) → P (d)
)

(1, y/d)
7. ∃xP (x) (6)
8. ¬P (d) (6)

×
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T-79.5101 Spring 2008

Advanced Course in Computational Logic

Exercise Session 2

Solutions

1. a) If ϕ is true, then the agent knows that ϕ.

b) If the agent does not know that ϕ, then the agent knows that it
does not know that ϕ.

c) If the agent knows that ψ follows from ϕ, then it holds that if the
agent knows that ϕ, then the agent knows that ψ.

d) The agent knows that ϕ is true or the agent knows that ϕ is not
true. In other words, the agent knows whether ϕ is true or not.

2. a) ϕ→ LKϕ

b) Lϕ ∧ Lψ → L(ϕ ∧ ψ)

c) Kϕ→ Lϕ

d) LLϕ→ Lϕ

3. Let P = ”it’s raining”.

a) KaKbP ∧ ¬KbKaKbP

b) Ka(¬KbP ∧ ¬Kb¬P )

c) Kb(KaP ∨Ka¬P )

d) ¬KaKbKaP ∧ ¬Ka¬KbKaP

4. We are given the model M = 〈S,R, v〉:

s2

B
s3

A

��

ww

s1

A

``BBBBBBBB

FF

a) M, s1  2A does not hold because 〈s1, s2〉 ∈ R and M, s2 1 A.

b) M, s1  3B → 23⊤ holds if and only if

M, s1 1 3B or M, s1  23⊤
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holds. Since 〈s1, s2〉 ∈ R and M, s2  B, M, s1 1 3B does not
hold. On the other hand, M, s1  23⊤ holds if and only if

M, s2  3⊤ and M, s3  3⊤

holds. However, since there is no world s ∈ S such that 〈s2, s〉 ∈
R, it follows that M, s2 1 3⊤, and hence M, s1  23⊤ and
M, s1  3B → 23⊤ do not hold.

c) M, s3  332⊥ holds iff M, s1  32⊥ or M, s3  32⊥ holds.
M, s1  32⊥ holds iff

M, s2  2⊥ or M, s3  2⊥.

Since there is no world s ∈ S such that 〈s2, s〉 ∈ R it follows
that M, s2  2⊥ holds. Hence M, s1  32⊥ and, furthermore,
M, s3  332⊥ hold.

d) M, s1  2(B ∨ 23A) holds iff

M, s2  B ∨ 23A and M, s3  B ∨ 23A

hold. M, s2  B∨23A holds since M, s2  B. M, s3  B∨23A
holds iff

M, s3  B or M, s3  23A.

M, s3  B does not hold since v(s3, B) = false. Now M, s3 

23A holds iff M, s1  3A and M, s3  3A hold, which in turn
is true since 〈s1, s3〉 ∈ R, and 〈s3, s3〉 ∈ R and v(s3, A) = true.
Hence, M, s3  23A and M, s3  B ∨23A hold. It follows that
M, s1  2(B ∨ 23A) holds.

e) M, s1  3(2A ∧ 2¬A) holds iff

M, s2  2A ∧ 2¬A or M, s3  2A ∧ 2¬A.

Now, M, s2  2A∧2¬A holds because M, s2  2A and M, s2 

2¬A since there is no world s ∈ S for which 〈s2, s〉 ∈ R.

5. We are given the model M = 〈S,R, v〉:

s1A

~~~~
~~

~~
~~

��

22
��

s4 A

��

tt

s2
// s3

// s5 AEEee
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As in the previous exercise, we could determine the truth value of
2323A in each of the worlds by directly applying the definitions of
2 and 3. In other words, we could for example determine whether
M, s1  2323A, M, s2  2323A, etc., until we find a world in
which the given formula is true.

However, we can also use an alternative approach. Starting from the
smallest subformula (which here is the atomic formula A), iteratively
determine the truth values of the subformulas based on the truth values
determined for the smaller subformulas in each of the worlds in the
model. In the end, we have determined all worlds in the model where
the formula 2323A itself is true. Any such world is an answer to the
exercise.

Since v(s1, A) = v(s4, A) = v(s5, A) = true and v(s, A) = false otherwi-
se, we have that

M, s1  A, M, s4  A and M, s5  A

(and M, s 1 A otherwise). Since for example 〈s1, s4〉 ∈ R, 〈s3, s5〉 ∈ R,
〈s4, s1〉 ∈ R, and 〈s5, s5〉 ∈ R, by the semantics of 3 it follows that

M, s1  3A, M, s3  3A, M, s4  3A and M, s5  3A

hold. On the other hand, M, s2  3A does not hold since the only
successor of the world s2 in R is s3 and M, s3 1 A.

By the semactics of 2 we have that

M, s2  23A, M, s3  23A and M, s4  23A,

since for each world s′ which is a successor of s2, s3, or s4 we have that
M, s′  3A holds. Additionally, these are the only worlds in which
23A is true. (The formula 23A is false in the worlds s1 and s5 since
these worlds both have the successor s2 and M, s2 1 3A holds.)

Now again by the semantics of 3 we have

M, s1  323A, M, s2  323A and M, s5  323A

since each of the worlds s1, s2, and s5 have a successor in which 23A
is true (since by the above we have M, s2  23A and M, s3  23A,
and e.g. 〈s1, s2〉 ∈ R, 〈s2, s3〉 ∈ R and 〈s5, s2〉 ∈ R). Furthermore,
323A is false in the worlds s3 (since the only successor of s3 is s5 but
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M, s5 1 23A) and s4 (since M, s1 1 23A and M, s5 1 23A, and s4

has no other successors).

Finally by the semantics of 2 we have that

M, s3  2323A, M, s4  2323A and M, s5  2323A

hold since in each successor s′ of the worlds s3, s4, and s5 M, s′ 

323A holds. Now, s3, s4, and s5 are the only worlds in which the
formula 2323A is true.

Notice that at each stage it is important to determine all worlds in
which the subformula at hand is true. Otherwise, we could end up in a
situation in which the truth value of some other subformula could not
be determined based directly on the already determined values. For
example, if we would simple note that M, s5  A and M, s3  3A
(since 〈s3, s5〉 ∈ R), we couldn’t then determine the value of 23A in
world s4 since it depends additionally on the values of 23A in s1 and
s5 (successors of s4). Especially, it would then be a mistake to claim
M, s4 1 23A.
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Exercise Session 3

Solutions

1. a) M = 〈S,R, v〉, S = {s, t}, R = {〈s, s〉, 〈s, t〉}, v(s, A) = true,
v(t, A) = false.

s-- // t
A ¬A

M, s  3A holds since 〈s, s〉 ∈ R and M, s  A. M, s  2A does
not hold since 〈s, t〉 ∈ R and M, t 1 A. Hence M, s 1 3A→ 2A.

b) M = 〈S,R, v〉, S = {s, t}, R = {〈s, t〉}, v(s, A) = v(t, A) = false.

¬A s // t ¬A

Since 〈s, t〉 ∈ R and M, t 1 A, we have M, s 1 2A. Hence,
M, s  ¬2A holds. Since the world t has no successors, M, t 

2A holds. Now M, t 1 ¬2A from which it follows that M, s 1

2¬2A (since 〈s, t〉 ∈ R). Hence M, s 1 ¬2A → 2¬2A.

c) M = 〈S,R, v〉, S = {s, t, u}, R = {〈s, t〉, 〈s, u〉, 〈t, t〉}, v(s, A) =
v(u,A) = false ja v(t, A) = true.

¬A
s

����
��

��
��

  A
AA

AA
AA

AA

tLL u
A ¬A

M, t  3A since 〈t, t〉 ∈ R and M, t  A. Since t is itself its
only successor, M, t  2A holds as well. Hence M, t  3A∧2A
holds, from which it follows that M, s  3(3A∧2A) holds (since
〈s, t〉 ∈ R). Since u has no successors, we have M, u 1 3A. Since
〈s, u〉 ∈ R, it follows that M, s 1 23A. Hence M, s 1 3(3A ∧
2A) → 23A.

d) M = 〈S,R, v〉, S = {s, t}, R = {〈s, s〉, 〈s, t〉}, v(s, A) = v(t, B) =
true, v(s, B) = v(t, A) = false.

s-- // t
A,¬B ¬A,B
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M, s  3A holds since 〈s, s〉 ∈ R and M, s  A. M, s  3B
holds since 〈s, t〉 ∈ R and M, t  B. Hence M, s  3A ∧ 3B.
M, s  3(A ∧ B) does not hold since s has no successor s′ for
which M, s′  A ∧B. Hence M, s 1 (3A ∧ 3B) → 3(A ∧B).

2. Let M = 〈S,R, v〉.

(⇒) Assume that 3⊤ is valid in M. Take an arbitrary s ∈ S. By
the assumption, M, s  3⊤ holds. Hence there is a t ∈ S for which
〈s, t〉 ∈ R and M, t  ⊤. Furthermore,

if M, s  2A, then also M, t  A,

where t is a successor of s, and hence

M, s  3A.

Thus, if M, s  2A then M, s  3A. Hence M, s  2A → 3A, and
2A→ 3A is valid in M.

(⇐) Assume that 2A → 3A is valid in M. Take an arbitrary s ∈ S.
We claim that there is a t ∈ S for which 〈s, t〉 ∈ R. If this would not
be the case, s would have no successors, in which case M, s  2A
would hold. Since 2A → 3A is valid in M (by the assumption), now
M, s  3A would also hold, which gives us a contradiction.

Hence there is a t ∈ S for which 〈s, t〉 ∈ R. Thus M, t  ⊤ and
therefore M, s  3⊤. It follow that 3⊤ is valid in M.

3. We’ll apply a known results for generated submodels1

Given a model M = 〈S,R, v〉, if M′ = 〈S ′, R′, v′〉 is a submo-
del generated by S0 ⊆ S, then for all formulas P and worlds
s ∈ S ′ it holds that

M, s  P iff M′, s  P .

1Let M = 〈S, R, v〉 be a model. The submodel M′ = 〈S′, R′, v′〉 generated by the set

S0 ⊆ S is a model which fulfills the following conditions.

1. S′ is the least subset of S for which the following hold:

– S0 ⊆ S′.

– S′ is closed under R: if s ∈ S′ and t ∈ S for which 〈s, t〉 ∈ R, then t ∈ S′.

2. R′ = (S′ × S′) ∩ R.

3. v′(s, P ) = v(s, P ) for all atomic formulas P and worlds s ∈ S′.
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Since

2
(

(22A → 32A)∧32(2A → 3A)
)

→
(

3(3A → 2A) → ((3A∧23A)∨322¬A)
)

is true in the world s4 in M, the formula is valid in any generated
submodel of M which contains the world s4.

We are given the model M:

s1A
��

~~||
||

||
||

  B
BB

BB
BB

B

s2A // s5

s3A

OO

++ s4kk

OO

Now, form the submodel M′ = 〈S ′, R′, v′〉 generated by the set S0 =
{s4}. Since S0 ⊆ S ′, we have that s4 ∈ S ′. Since s3 ∈ S, s5 ∈ S, and
〈s4, s3〉 ∈ R, 〈s4, s5〉 ∈ R, we have s3 ∈ S ′ and s5 ∈ S ′ (otherwise S ′

would not be closed under R). Furthermore, since s2 ∈ S and 〈s3, s2〉 ∈
R, we have s2 ∈ S ′. Since the world s1 is not reachable from any of the
worlds s2, s3, s4, s5 under R, the set {s2, s3, s4, s5} is closed under R.
Clearly, this set is the smallest subset of S which is closed under R and
contains the world s3. Hence, to fulfill the requirements for a generated
submodel, we define

S ′ = {s2, s3, s4, s5},
R′ = {〈s2, s5〉, 〈s3, s2〉, 〈s3, s4〉, 〈s4, s3〉, 〈s4, s5〉}

and v′(s2, A) = v′(s3, A) = true, v′(s4, A) = v′(s5, A) = false. Now M′

is

s2A // s5

s3A

OO

++ s4kk

OO

Since the formula given in the excercise is true in the world s4 of the
model M, the formula is also true in the world s4 in the model M′

since M′ is a generated submodel of M. Furthermore, M′ has four
possible worlds as required.

4. F = 〈S,R〉: s1
// s2

��
s4

OO

s3
oo
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F ′ = 〈S ′, R′〉, where S ′ = {r1, r2} and R′ = {〈r1, r2〉, 〈r2, r1〉}:

r1

��
r2

HH

Define the mapping f : S → S ′:

f(s1) = f(s3) = r1

f(s2) = f(s4) = r2

The mapping f is a p-morphism since

1. f is surjective (e.g., r1 = f(s1) and r2 = f(s2))

2. ∀s, t ∈ S : if sRt, then f(s)R′f(t).
(For example, corresponding to 〈s1, s2〉 ∈ R we have 〈f(s1), f(s2)〉 =
〈r1, r2〉 which belongs to R′; one can make a similar check for all
the pairs in R.)

3. ∀s ∈ S ∀t ∈ S ′ : if f(s)R′t, then there is a u ∈ S for which sRu
and f(u) = t.
(For example, 〈r2, r1〉 = 〈f(s4), r1〉 ∈ R′, and s1 ∈ S, s4Rs1, and
f(s1) = r1; the other cases are similar.)

By the proposition considering p-morphisms in the lecture notes it fol-
lows that

if F |= P, then F ′ |= P

for all formulas P .
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