T-79.5101

Advanced Course in Computational Logic

Exercise Session 1

Solutions

1. One can use analytic tableaux for finding a satisfying truth assignment for any satisfiable propositional logic formula by constructing a complete tableau starting from the given formula in the root. The set of atomic formulas in each of the open branches in such a complete tableau describes a satisfying truth assignment for the formula.
a)

1.	$\neg((P \rightarrow Q) \rightarrow(Q \rightarrow P))$	
2.	$P \rightarrow Q$	(1)
3.	$\neg(Q \rightarrow P)$	(1)
4.	Q	(3)
5.	$\neg P$	
6.	$\neg P$	$(2) \mid 7$.
(2)	Q	(2)

In this complete tableau both of the open branches describe the same satisfying truth assignment, $M=\{Q\}$.
b)

1.	$((P \vee \neg R) \leftrightarrow R) \wedge(P \rightarrow Q)$				
2.	$(P \vee \neg R) \leftrightarrow R$				
3.	$P \rightarrow Q$				
4.	$(P \vee \neg R) \wedge R$	$R \quad(2)$		$\neg(P \vee \neg R) \wedge$	R (2)
11.	$P \vee \neg R$	(4)	6.	$\neg(P \vee \neg R)$	(5)
12.	R	(4)	7.	$\neg R$	(5)
13. P	$P \quad$ (11)	14. $\neg R$ (11)	8.	$\neg P$	(6)
15. $\neg P(3)$	\| 16. Q (3)	\times	9.	$\neg \neg R$	(6)
\times			10.	R	(9)

The only single branch in this complete tableau describes the satisfying truth assignment $M=\{P, Q, R\}$.

Spring 2008

2. One can also use tableaux for investigating whether a given propositional logic formula ϕ is a logical consequence of a given set of propositional formulas Σ. Starting from the root which, in addition to all the formulas in Σ, contains $\neg \phi$, construct a complete tableau. If the tableau is closed, then ϕ is a logical consequence of Σ. On the other hand, any open branch in a complete tableau describes a counterexample for the logical consequence (a truth assignment that satisfies all the formulas in Σ but which does not satisfy ϕ).

Since we have a complete tableau with an open branch, the formula $\neg Q$ is not a logical consequence of the given set of formulas Σ. From the open branch we obtain the countermodel $M=\{P, Q, R\}$.
3. A propositional logic formula is in conjunctive normal form (CNF) if it is of the form

$$
\left(L_{1}^{1} \vee \cdots \vee L_{n_{1}}^{1}\right) \wedge \cdots \wedge\left(L_{1}^{m} \vee \cdots \vee L_{n_{m}}^{m}\right),
$$

where each of the formulas L_{i}^{j} is a literal (an atomic formula or its negation).
The disjunctive normal form (DNF) is

$$
\left(L_{1}^{1} \wedge \cdots \wedge L_{n_{1}}^{1}\right) \vee \cdots \vee\left(L_{1}^{m} \wedge \cdots \wedge L_{n_{m}}^{m}\right) .
$$

One can apply tableaux to obtain the DNF of an arbitrary formula ϕ. Determine all satisfying truth assignments for ϕ by constructing a complete tableau with ϕ in the root, and then take the disjunction of hese assignments.

$$
\begin{aligned}
& \text { 1. } \quad(P \rightarrow Q) \rightarrow(P \vee Q) \\
& \text { 2. } \neg(P \rightarrow Q) \quad(1) \quad 3 . \quad P \vee Q \quad \text { (1) } \\
& \begin{array}{cc|ccc}
P & (2) & 6 . & P & (3) \mid 7 . \\
\neg Q & (2) & & & \\
\hline
\end{array}
\end{aligned}
$$

From this tableau we obtain the $\operatorname{DNF}(P \wedge \neg Q) \vee P \vee Q$, which can be simplified further to $P \vee Q$.
For determining the CNF of ϕ, first form the DNF of $\neg \phi$:

$$
\begin{array}{lcc}
\text { 1. } & \neg((P \rightarrow Q) \rightarrow(P \vee Q)) \\
\text { 2. } & P \rightarrow Q & \\
\text { 3. } & \neg(P \vee Q) & \text { (1) } \\
\text { 4. } & \neg P & \text { (1) } \\
\text { 5. } & \neg Q & \text { (3) } \\
\text { 6. } & \neg P & (2) \mid 7 . \\
\text { (2) }
\end{array}
$$

Thus the DNF of the formula's negation

$$
\neg((P \rightarrow Q) \rightarrow(P \vee Q))
$$

is

$$
\neg P \wedge \neg Q
$$

The CNF of the original formula ϕ is then obtained by negating the DNF of $\neg \phi$ and applying De Morgan's rules. Now, the CNF of the formula

$$
(P \rightarrow Q) \rightarrow(P \vee Q)
$$

is

$$
\neg(\neg P \wedge \neg Q) \equiv P \vee Q
$$

(In this example the CNF and DNF of the formula coincide. However, his does not hold in general.)
4. a)

16. $\neg P(c, c) \quad$ (14) $\mid 17 . \quad P(c, c) \quad$ (14)
18. $\neg P(d, d)(15)|19 . P(d, d)(15)| 20 . \neg P(d, d)(15) \mid 21 . P(d, d)(15)$

In this complete tableau there are four open branches. Based on each of these branches we can now construct a structure which gives a model for the given predicate logic formula in the root of the tableau. We'll now construct a structure \mathcal{A} based on the leftmost open branch. Define the universe

$$
A=\{1,2\}
$$

and

$$
c^{\mathcal{A}}=1, \quad d^{\mathcal{A}}=2 \quad \text { sekä } \quad P^{\mathcal{A}}=\{\langle 1,2\rangle,\langle 2,1\rangle\} .
$$

Let's check that the given formula is true in the structure \mathcal{A}. Since e.g. $\langle 1,2\rangle=\left\langle c^{\mathcal{A}}, d^{\mathcal{A}}\right\rangle \in P^{\mathcal{A}}$, we have $\mathcal{A} \models P(c, d)$, and hence

$$
\mathcal{A} \models \exists x_{1} \exists x_{2} P\left(x_{1}, x_{2}\right)
$$

holds. On the other hand

$$
\mathcal{A} \models \forall x_{1} \forall x_{2}\left(P\left(x_{1}, x_{2}\right) \rightarrow P\left(x_{2}, x_{1}\right)\right),
$$

holds as well since

$$
\begin{aligned}
& \mathcal{A} \models P(c, c) \rightarrow P(c, c), \\
& \mathcal{A} \models P(c, d) \rightarrow P(d, c), \\
& \mathcal{A} \models P(d, c) \rightarrow P(c, d) \text { and } \\
& \mathcal{A} \models P(d, d) \rightarrow P(d, d),
\end{aligned}
$$

and $c^{\mathcal{A}}=1, d^{\mathcal{A}}=2,\left\langle c^{\mathcal{A}}, c^{\mathcal{A}}\right\rangle=\langle 1,1\rangle \notin P^{\mathcal{A}}$ (and hence $\mathcal{A} \not \vDash$ $P(c, c)),\left\langle\mathcal{A}^{\mathcal{A}}, d^{\mathcal{A}}\right\rangle=\langle 1,2\rangle \in P^{\mathcal{A}}$ (and hence $\left.\mathcal{A} \models P(c, d)\right),\left\langle d^{\mathcal{A}}, c^{\mathcal{A}}\right\rangle=$ $\langle 2,1\rangle \in P^{\mathcal{A}}$ (and hence $\mathcal{A} \models P(d, c)$), and $\left\langle d^{\mathcal{A}}, d^{\mathcal{A}}\right\rangle=\langle 2,2\rangle \notin P^{\mathcal{A}}$ ($\mathcal{A} \not \vDash P(d, d)$).
b) In this case there is no finite complete tableau; it turns out that the tableau rules force us to repeatedly introduce new constants, which then have to be repeatedly applied to the universally quantified formulas generated in the tableau.
(This exemplifies the semi-decidability of predicate logic: there is no systematic method using which, given an arbitrary predicate logic formula, one could either find a model or determine the formula as unsatisfiable in finitely many steps.)
However, the formula given in the exercise is true for example in the following structure \mathcal{A} :
Define the universe $A=\{1\}$. Additionally, we need a constant c and predicate P such that

$$
c^{\mathcal{A}}=1 \quad \text { and } \quad P^{\mathcal{A}}=\{\langle 1,1\rangle\} .
$$

Let's check that
$\mathcal{A} \vDash \forall x_{1} \exists x_{2} P\left(x_{1}, x_{2}\right) \wedge \forall x_{1} \forall x_{2} \forall x_{3}\left(P\left(x_{1}, x_{2}\right) \wedge P\left(x_{2}, x_{3}\right) \rightarrow P\left(x_{1}, x_{3}\right)\right)$
holds. Since there is a single element in the universe $\left(c^{\mathcal{A}}=1\right)$ and $\langle 1,1\rangle \in P$ (and hence $\mathcal{A} \models P(c, c)$),

$$
\mathcal{A} \models \forall x_{1} \exists x_{2} P\left(x_{1}, x_{2}\right)
$$

holds. For the same reason

$$
\mathcal{A} \models \forall x_{1} \forall x_{2} \forall x_{3}\left(P\left(x_{1}, x_{2}\right) \wedge P\left(x_{2}, x_{3}\right) \rightarrow P\left(x_{1}, x_{3}\right)\right),
$$

since

$$
\mathcal{A} \models P(c, c) \wedge P(c, c) \rightarrow P(c, c) .
$$

5. a)

$\neg((\forall x P(x) \wedge \forall x Q(x)) \rightarrow \forall x(P(x) \vee Q(x)))$	
$\forall x P(x) \wedge \forall x Q(x)$	(1)
$\neg \forall x(P(x) \vee Q(x))$	(1)
$\forall x P(x)$	(2)
$\forall x Q(x)$	(2)
$\neg(P(c) \vee Q(c))$	(3, x/c)
$\neg P(c)$	(6)
$\neg Q(c)$	(6)
$P(c)$	(4, x / c)

$$
\begin{array}{cl}
\neg \exists y(\exists x P(x) \rightarrow P(y)) \\
\neg(\exists x P(x) \rightarrow P(c)) & (1, y / c) \\
\exists x P(x) & (2) \\
\neg P(c) & (2) \\
P P(d) & (3, x / d) \\
\neg(\exists x P(x) \rightarrow P(d)) & (1, y / d) \\
\exists x P(x) & (6) \\
\neg P(d) & (6) \\
\quad(&
\end{array}
$$

T-79.5101

Advanced Course in Computational Logic

Exercise Session 2

Solutions

1. a) If φ is true, then the agent knows that φ.
b) If the agent does not know that φ, then the agent knows that it does not know that φ.
c) If the agent knows that ψ follows from φ, then it holds that if the agent knows that φ, then the agent knows that ψ.
d) The agent knows that φ is true or the agent knows that φ is not true. In other words, the agent knows whether φ is true or not.
2. a) $\varphi \rightarrow L K \varphi$
b) $L \varphi \wedge L \psi \rightarrow L(\varphi \wedge \psi)$
c) $K \varphi \rightarrow L \varphi$
d) $L L \varphi \rightarrow L \varphi$
3. Let $P=$ "it's raining".
a) $K_{a} K_{b} P \wedge \neg K_{b} K_{a} K_{b} P$
b) $K_{a}\left(\neg K_{b} P \wedge \neg K_{b} \neg P\right)$
c) $K_{b}\left(K_{a} P \vee K_{a} \neg P\right)$
d) $\neg K_{a} K_{b} K_{a} P \wedge \neg K_{a} \neg K_{b} K_{a} P$
4. We are given the model $\mathcal{M}=\langle S, R, v\rangle$:

a) $\mathcal{M}, s_{1} \Vdash \square A$ does not hold because $\left\langle s_{1}, s_{2}\right\rangle \in R$ and $\mathcal{M}, s_{2} \nVdash A$.
b) $\mathcal{M}, s_{1} \Vdash \diamond B \rightarrow \square \diamond T$ holds if and only if

$$
\mathcal{M}, s_{1} \nVdash \diamond B \quad \text { or } \quad \mathcal{M}, s_{1} \Vdash \square \diamond \top
$$

holds. Since $\left\langle s_{1}, s_{2}\right\rangle \in R$ and $\mathcal{M}, s_{2} \Vdash B, \mathcal{M}, s_{1} \nVdash \diamond B$ does not hold. On the other hand, $\mathcal{M}, s_{1} \Vdash \square \diamond \top$ holds if and only if

$$
\mathcal{M}, s_{2} \Vdash \diamond \top \quad \text { and } \quad \mathcal{M}, s_{3} \Vdash \diamond \top
$$

holds. However, since there is no world $s \in S$ such that $\left\langle s_{2}, s\right\rangle \in$ R, it follows that $\mathcal{M}, s_{2} \nVdash \diamond T$, and hence $\mathcal{M}, s_{1} \Vdash \square \diamond T$ and $\mathcal{M}, s_{1} \Vdash \diamond B \rightarrow \square \diamond T$ do not hold.
c) $\mathcal{M}, s_{3} \Vdash \diamond \diamond \square \perp$ holds iff $\mathcal{M}, s_{1} \Vdash \diamond \square \perp$ or $\mathcal{M}, s_{3} \Vdash \diamond \square \perp$ holds. $\mathcal{M}, s_{1} \Vdash \diamond \square \perp$ holds iff

$$
\mathcal{M}, s_{2} \Vdash \square \perp \quad \text { or } \quad \mathcal{M}, s_{3} \Vdash \square \perp .
$$

Since there is no world $s \in S$ such that $\left\langle s_{2}, s\right\rangle \in R$ it follows that $\mathcal{M}, s_{2} \Vdash \square \perp$ holds. Hence $\mathcal{M}, s_{1} \Vdash \diamond \square \perp$ and, furthermore, $\mathcal{M}, s_{3} \Vdash \diamond \diamond \square \perp$ hold
d) $\mathcal{M}, s_{1} \Vdash \square(B \vee \square \diamond A)$ holds iff

$$
\mathcal{M}, s_{2} \Vdash B \vee \square \diamond A \quad \text { and } \quad \mathcal{M}, s_{3} \Vdash B \vee \square \diamond A
$$

hold. $\mathcal{M}, s_{2} \Vdash B \vee \square \diamond A$ holds since $\mathcal{M}, s_{2} \Vdash B . \mathcal{M}, s_{3} \Vdash B \vee \square \diamond A$ holds iff

$$
\mathcal{M}, s_{3} \Vdash B \quad \text { or } \quad \mathcal{M}, s_{3} \Vdash \square \diamond A
$$

$\mathcal{M}, s_{3} \Vdash B$ does not hold since $v\left(s_{3}, B\right)=$ false. Now $\mathcal{M}, s_{3} \Vdash$ $\square \diamond A$ holds iff $\mathcal{M}, s_{1} \Vdash \diamond A$ and $\mathcal{M}, s_{3} \Vdash \diamond A$ hold, which in turn is true since $\left\langle s_{1}, s_{3}\right\rangle \in R$, and $\left\langle s_{3}, s_{3}\right\rangle \in R$ and $v\left(s_{3}, A\right)=$ true. Hence, $\mathcal{M}, s_{3} \Vdash \square \diamond A$ and $\mathcal{M}, s_{3} \Vdash B \vee \square \diamond A$ hold. It follows that $\mathcal{M}, s_{1} \Vdash \square(B \vee \square \diamond A)$ holds.
e) $\mathcal{M}, s_{1} \Vdash \diamond(\square A \wedge \square \neg A)$ holds iff

$$
\mathcal{M}, s_{2} \Vdash \square A \wedge \square \neg A \quad \text { or } \quad \mathcal{M}, s_{3} \Vdash \square A \wedge \square \neg A
$$

Now, $\mathcal{M}, s_{2} \Vdash \square A \wedge \square \neg A$ holds because $\mathcal{M}, s_{2} \Vdash \square A$ and $\mathcal{M}, s_{2} \Vdash$ $\square \neg A$ since there is no world $s \in S$ for which $\left\langle s_{2}, s\right\rangle \in R$.
5. We are given the model $\mathcal{M}=\langle S, R, v\rangle$:

As in the previous exercise, we could determine the truth value of $\square \diamond \square \diamond A$ in each of the worlds by directly applying the definitions of \square and \diamond. In other words, we could for example determine whether $\mathcal{M}, s_{1} \Vdash \square \diamond \square \diamond A, \mathcal{M}, s_{2} \Vdash \square \diamond \square \diamond A$, etc., until we find a world in which the given formula is true.
However, we can also use an alternative approach. Starting from the smallest subformula (which here is the atomic formula A), iteratively determine the truth values of the subformulas based on the truth values determined for the smaller subformulas in each of the worlds in the model. In the end, we have determined all worlds in the model where the formula $\square \diamond \square \diamond A$ itself is true. Any such world is an answer to the exercise.

Since $v\left(s_{1}, A\right)=v\left(s_{4}, A\right)=v\left(s_{5}, A\right)=$ true and $v(s, A)=$ false otherwise, we have that

$$
\mathcal{M}, s_{1} \Vdash A, \quad \mathcal{M}, s_{4} \Vdash A \quad \text { and } \quad \mathcal{M}, s_{5} \Vdash A
$$

(and $\mathcal{M}, s \nVdash A$ otherwise). Since for example $\left\langle s_{1}, s_{4}\right\rangle \in R,\left\langle s_{3}, s_{5}\right\rangle \in R$, $\left\langle s_{4}, s_{1}\right\rangle \in R$, and $\left\langle s_{5}, s_{5}\right\rangle \in R$, by the semantics of \diamond it follows that

$$
\mathcal{M}, s_{1} \Vdash \diamond A, \quad \mathcal{M}, s_{3} \Vdash \diamond A, \quad \mathcal{M}, s_{4} \Vdash \diamond A \text { and } \mathcal{M}, s_{5} \Vdash \diamond A
$$

hold. On the other hand, $\mathcal{M}, s_{2} \Vdash \diamond A$ does not hold since the only successor of the world s_{2} in R is s_{3} and $\mathcal{M}, s_{3} \nVdash A$.

By the semactics of \square we have that

$$
\mathcal{M}, s_{2} \Vdash \square \diamond A, \quad \mathcal{M}, s_{3} \Vdash \square \diamond A \quad \text { and } \quad \mathcal{M}, s_{4} \Vdash \square \diamond A,
$$

since for each world s^{\prime} which is a successor of s_{2}, s_{3}, or s_{4} we have that $\mathcal{M}, s^{\prime} \Vdash \diamond A$ holds. Additionally, these are the only worlds in which $\square \diamond A$ is true. (The formula $\square \diamond A$ is false in the worlds s_{1} and s_{5} since these worlds both have the successor s_{2} and $\mathcal{M}, s_{2} \nVdash \diamond A$ holds.)
Now again by the semantics of \diamond we have

$$
\mathcal{M}, s_{1} \Vdash \diamond \square \diamond A, \quad \mathcal{M}, s_{2} \Vdash \diamond \square \diamond A \quad \text { and } \quad \mathcal{M}, s_{5} \Vdash \diamond \square \diamond A
$$

since each of the worlds s_{1}, s_{2}, and s_{5} have a successor in which $\square \diamond A$ is true (since by the above we have $\mathcal{M}, s_{2} \Vdash \square \diamond A$ and $\mathcal{M}, s_{3} \Vdash \square \diamond A$, and e.g. $\left\langle s_{1}, s_{2}\right\rangle \in R,\left\langle s_{2}, s_{3}\right\rangle \in R$ and $\left\langle s_{5}, s_{2}\right\rangle \in R$). Furthermore, $\diamond \square \diamond A$ is false in the worlds s_{3} (since the only successor of s_{3} is s_{5} but
$\left.\mathcal{M}, s_{5} \nVdash \square \diamond A\right)$ and $s_{4}\left(\right.$ since $\mathcal{M}, s_{1} \nVdash \square \diamond A$ and $\mathcal{M}, s_{5} \nVdash \square \diamond A$, and s_{4} has no other successors).
Finally by the semantics of \square we have that

$$
\mathcal{M}, s_{3} \Vdash \square \diamond \square \diamond A, \quad \mathcal{M}, s_{4} \Vdash \square \diamond \square \diamond A \quad \text { and } \quad \mathcal{M}, s_{5} \Vdash \square \diamond \square \diamond A
$$

hold since in each successor s^{\prime} of the worlds s_{3}, s_{4}, and $s_{5} \mathcal{M}, s^{\prime} \Vdash$ $\diamond \square \diamond A$ holds. Now, s_{3}, s_{4}, and s_{5} are the only worlds in which the formula $\square \diamond \square \diamond A$ is true.

Notice that at each stage it is important to determine all worlds in which the subformula at hand is true. Otherwise, we could end up in a situation in which the truth value of some other subformula could not be determined based directly on the already determined values. For example, if we would simple note that $\mathcal{M}, s_{5} \Vdash A$ and $\mathcal{M}, s_{3} \Vdash \diamond A$ (since $\left\langle s_{3}, s_{5}\right\rangle \in R$), we couldn't then determine the value of $\square \diamond A$ in world s_{4} since it depends additionally on the values of $\square \diamond A$ in s_{1} and s_{5} (successors of s_{4}). Especially, it would then be a mistake to claim $\mathcal{M}, s_{4} \nVdash \square \diamond A$

T-79.5101

Exercise Session 3

Solutions

Advanced Course in Computational Logic

1. a) $\mathcal{M}=\langle S, R, v\rangle, S=\{s, t\}, R=\{\langle s, s\rangle,\langle s, t\rangle\}, v(s, A)=$ true, $v(t, A)=$ false.

$$
\begin{aligned}
& \\
&> \longrightarrow t \\
& A \neg A
\end{aligned}
$$

$\mathcal{M}, s \Vdash \diamond A$ holds since $\langle s, s\rangle \in R$ and $\mathcal{M}, s \Vdash A . \mathcal{M}, s \Vdash \square A$ does not hold since $\langle s, t\rangle \in R$ and $\mathcal{M}, t \nVdash A$. Hence $\mathcal{M}, s \nVdash \diamond A \rightarrow \square A$. b) $\mathcal{M}=\langle S, R, v\rangle, S=\{s, t\}, R=\{\langle s, t\rangle\}, v(s, A)=v(t, A)=$ false.

$$
\neg A s \longrightarrow t \neg A
$$

Since $\langle s, t\rangle \in R$ and $\mathcal{M}, t \nVdash A$, we have $\mathcal{M}, s \nVdash \square A$. Hence, $\mathcal{M}, s \Vdash \neg \square A$ holds. Since the world t has no successors, $\mathcal{M}, t \Vdash$ $\square A$ holds. Now $\mathcal{M}, t \nVdash \neg \square A$ from which it follows that $\mathcal{M}, s \nVdash$ $\square \neg \square A($ since $\langle s, t\rangle \in R)$. Hence $\mathcal{M}, s \nVdash \neg \square A \rightarrow \square \neg \square A$.
c) $\mathcal{M}=\langle S, R, v\rangle, S=\{s, t, u\}, R=\{\langle s, t\rangle,\langle s, u\rangle,\langle t, t\rangle\}, v(s, A)=$ $v(u, A)=$ false ja $v(t, A)=$ true.

$\mathcal{M}, t \Vdash \diamond A$ since $\langle t, t\rangle \in R$ and $\mathcal{M}, t \Vdash A$. Since t is itself its only successor, $\mathcal{M}, t \Vdash \square A$ holds as well. Hence $\mathcal{M}, t \Vdash \diamond A \wedge \square A$ holds, from which it follows that $\mathcal{M}, s \Vdash \diamond(\diamond A \wedge \square A)$ holds (since $\langle s, t\rangle \in R)$. Since u has no successors, we have $\mathcal{M}, u \nVdash \diamond A$. Since $\langle s, u\rangle \in R$, it follows that $\mathcal{M}, s \nVdash \square \diamond A$. Hence $\mathcal{M}, s \nVdash \diamond(\diamond A \wedge$ $\square A) \rightarrow \square \diamond A$.
d) $\mathcal{M}=\langle S, R, v\rangle, S=\{s, t\}, R=\{\langle s, s\rangle,\langle s, t\rangle\}, v(s, A)=v(t, B)=$

Spring 2008

$$
=\{s, t\}, R=\{\langle s
$$

$$
\{s, t\}, \kappa=\{\langle s
$$ true, $v(s, B)=v(t, A)=$ false.

$\mathcal{M}, s \Vdash \diamond A$ holds since $\langle s, s\rangle \in R$ and $\mathcal{M}, s \Vdash A . \mathcal{M}, s \Vdash \diamond B$ holds since $\langle s, t\rangle \in R$ and $\mathcal{M}, t \Vdash B$. Hence $\mathcal{M}, s \Vdash \diamond A \wedge \diamond B$. $\mathcal{M}, s \Vdash \diamond(A \wedge B)$ does not hold since s has no successor s^{\prime} for which $\mathcal{M}, s^{\prime} \Vdash A \wedge B$. Hence $\mathcal{M}, s \nVdash(\diamond A \wedge \diamond B) \rightarrow \diamond(A \wedge B)$.
2. Let $\mathcal{M}=\langle S, R, v\rangle$.
(\Rightarrow) Assume that $\diamond T$ is valid in \mathcal{M}. Take an arbitrary $s \in S$. By the assumption, $\mathcal{M}, s \Vdash \diamond T$ holds. Hence there is a $t \in S$ for which $\langle s, t\rangle \in R$ and $\mathcal{M}, t \Vdash T$. Furthermore,

$$
\text { if } \mathcal{M}, s \Vdash \square A, \quad \text { then also } \quad \mathcal{M}, t \Vdash A \text {, }
$$

where t is a successor of s, and hence

$$
\mathcal{M}, s \Vdash \diamond A .
$$

Thus, if $\mathcal{M}, s \Vdash \square A$ then $\mathcal{M}, s \Vdash \diamond A$. Hence $\mathcal{M}, s \Vdash \square A \rightarrow \diamond A$, and $\square A \rightarrow \diamond A$ is valid in \mathcal{M}.
(\Leftarrow) Assume that $\square A \rightarrow \diamond A$ is valid in \mathcal{M}. Take an arbitrary $s \in S$. We claim that there is a $t \in S$ for which $\langle s, t\rangle \in R$. If this would not be the case, s would have no successors, in which case $\mathcal{M}, s \Vdash \square A$ would hold. Since $\square A \rightarrow \diamond A$ is valid in \mathcal{M} (by the assumption), now $\mathcal{M}, s \Vdash \diamond A$ would also hold, which gives us a contradiction.
Hence there is a $t \in S$ for which $\langle s, t\rangle \in R$. Thus $\mathcal{M}, t \Vdash \top$ and therefore $\mathcal{M}, s \Vdash \diamond T$. It follow that $\diamond T$ is valid in \mathcal{M}.
3. We'll apply a known results for generated submodels ${ }^{1}$

Given a model $\mathcal{M}=\langle S, R, v\rangle$, if $\mathcal{M}^{\prime}=\left\langle S^{\prime}, R^{\prime}, v^{\prime}\right\rangle$ is a submodel generated by $S_{0} \subseteq S$, then for all formulas P and worlds $s \in S^{\prime}$ it holds that

$$
\mathcal{M}, s \Vdash P \quad \text { iff } \quad \mathcal{M}^{\prime}, s \Vdash P .
$$

${ }^{1}$ Let $\mathcal{M}=\langle S, R, v\rangle$ be a model. The submodel $\mathcal{M}^{\prime}=\left\langle S^{\prime}, R^{\prime}, v^{\prime}\right\rangle$ generated by the set $S_{0} \subseteq S$ is a model which fulfills the following conditions.

1. S^{\prime} is the least subset of S for which the following hold:

- $S_{0} \subseteq S^{\prime}$.
- S^{\prime} is closed under R : if $s \in S^{\prime}$ and $t \in S$ for which $\langle s, t\rangle \in R$, then $t \in S^{\prime}$.

2. $R^{\prime}=\left(S^{\prime} \times S^{\prime}\right) \cap R$.
3. $v^{\prime}(s, P)=v(s, P)$ for all atomic formulas P and worlds $s \in S^{\prime}$.

Since
$\square((\square \square A \rightarrow \diamond \square A) \wedge \diamond \square(\square A \rightarrow \diamond A)) \rightarrow(\diamond(\diamond A \rightarrow \square A) \rightarrow((\diamond A \wedge \square \diamond A) \vee \diamond \square \square \neg A))$
is true in the world s_{4} in \mathcal{M}, the formula is valid in any generated submodel of \mathcal{M} which contains the world s_{4}.
We are given the model \mathcal{M} :

Now, form the submodel $\mathcal{M}^{\prime}=\left\langle S^{\prime}, R^{\prime}, v^{\prime}\right\rangle$ generated by the set $S_{0}=$ $\left\{s_{4}\right\}$. Since $S_{0} \subseteq S^{\prime}$, we have that $s_{4} \in S^{\prime}$. Since $s_{3} \in S, s_{5} \in S$, and $\left\langle s_{4}, s_{3}\right\rangle \in R,\left\langle s_{4}, s_{5}\right\rangle \in R$, we have $s_{3} \in S^{\prime}$ and $s_{5} \in S^{\prime}$ (otherwise S^{\prime} would not be closed under R). Furthermore, since $s_{2} \in S$ and $\left\langle s_{3}, s_{2}\right\rangle \in$ R, we have $s_{2} \in S^{\prime}$. Since the world s_{1} is not reachable from any of the worlds $s_{2}, s_{3}, s_{4}, s_{5}$ under R, the set $\left\{s_{2}, s_{3}, s_{4}, s_{5}\right\}$ is closed under R. Clearly, this set is the smallest subset of S which is closed under R and contains the world s_{3}. Hence, to fulfill the requirements for a generated submodel, we define

$$
\begin{aligned}
& S^{\prime}=\left\{s_{2}, s_{3}, s_{4}, s_{5}\right\} \\
& R^{\prime}=\left\{\left\langle s_{2}, s_{5}\right\rangle,\left\langle s_{3}, s_{2}\right\rangle,\left\langle s_{3}, s_{4}\right\rangle,\left\langle s_{4}, s_{3}\right\rangle,\left\langle s_{4}, s_{5}\right\rangle\right\}
\end{aligned}
$$

and $v^{\prime}\left(s_{2}, A\right)=v^{\prime}\left(s_{3}, A\right)=$ true, $v^{\prime}\left(s_{4}, A\right)=v^{\prime}\left(s_{5}, A\right)=$ false. Now \mathcal{M}^{\prime} is

Since the formula given in the excercise is true in the world s_{4} of the model \mathcal{M}, the formula is also true in the world s_{4} in the model \mathcal{M}^{\prime} since \mathcal{M}^{\prime} is a generated submodel of \mathcal{M}. Furthermore, \mathcal{M}^{\prime} has four possible worlds as required.
4. $\mathcal{F}=\langle S, R\rangle$:

$\mathcal{F}^{\prime}=\left\langle S^{\prime}, R^{\prime}\right\rangle$, where $S^{\prime}=\left\{r_{1}, r_{2}\right\}$ and $R^{\prime}=\left\{\left\langle r_{1}, r_{2}\right\rangle,\left\langle r_{2}, r_{1}\right\rangle\right\}:$

Define the mapping $f: S \rightarrow S^{\prime}$:

$$
\begin{aligned}
& f\left(s_{1}\right)=f\left(s_{3}\right)=r_{1} \\
& f\left(s_{2}\right)=f\left(s_{4}\right)=r_{2}
\end{aligned}
$$

The mapping f is a p-morphism since

1. f is surjective (e.g., $r_{1}=f\left(s_{1}\right)$ and $\left.r_{2}=f\left(s_{2}\right)\right)$
2. $\forall s, t \in S$: if $s R t$, then $f(s) R^{\prime} f(t)$.
(For example, corresponding to $\left\langle s_{1}, s_{2}\right\rangle \in R$ we have $\left\langle f\left(s_{1}\right), f\left(s_{2}\right)\right\rangle=$ $\left\langle r_{1}, r_{2}\right\rangle$ which belongs to R^{\prime}; one can make a similar check for all the pairs in R.)
3. $\forall s \in S \forall t \in S^{\prime}:$ if $f(s) R^{\prime} t$, then there is a $u \in S$ for which $s R u$ and $f(u)=t$.
(For example, $\left\langle r_{2}, r_{1}\right\rangle=\left\langle f\left(s_{4}\right), r_{1}\right\rangle \in R^{\prime}$, and $s_{1} \in S, s_{4} R s_{1}$, and $f\left(s_{1}\right)=r_{1}$; the other cases are similar.)

By the proposition considering p-morphisms in the lecture notes it follows that

$$
\text { if } \mathcal{F} \models P, \quad \text { then } \quad \mathcal{F}^{\prime} \models P
$$

for all formulas P.

