Exercise Session 4

1. Let P be an atomic formula (atomic proposition) and \mathbf{L} the set of al frames. Show that the following does not hold.

$$
\{\square P \rightarrow \diamond P\} \xi_{\mathbf{L}}\{\square \square \neg P\} \Longrightarrow \diamond \square P
$$

2. Let P be an atomic formula and \mathbf{L} the set of all frames. Show that the following does not hold.

$$
\{\diamond P \vee \diamond Q\} \models_{\mathbf{L}}\{\neg \square P\} \Longrightarrow \diamond Q
$$

3. Show that the following holds for arbitrary $\mathbf{L}, \Sigma, \Upsilon, P, Q$:

If $\Sigma \models_{\mathbf{L}} \Upsilon \Longrightarrow P \wedge \square P \wedge \square \square P \wedge \square \square \square P \rightarrow Q$
then $\Sigma \cup\{P\} \models_{\mathbf{L}} \Upsilon \Longrightarrow Q$.
4. a) Show that $\square P \rightarrow \square \square P$ is valid in any transitive frame.
b) Show that $\neg \square P \rightarrow \square \neg \square P$ is valid in any euclidean frame
5. Show that any frame which is both reflexive and euclidean is also symmetric and transitive.

T-79.5101
Advanced Course in Computational Logic
Exercise Session 5

1. a) Show that $\square P \rightarrow \diamond P$ is valid in all serial frames.
b) Show that $\square \square P \rightarrow \square P$ is valid in all weakly dense frames.
2. a) Give a Hilbert-style K-proof for the formula $\square P \rightarrow \square(Q \rightarrow P)$.
b) Give a Hilbert-style \mathbf{K}-derivation for the formula

$$
\square \neg Q \rightarrow \square \neg P
$$

given the set of (global) premises $\{\square(P \rightarrow Q)\}$. In other words, prove the following

$$
\{\square(P \rightarrow Q)\} \vdash_{\mathbf{K}} \emptyset \Longrightarrow \square \neg Q \rightarrow \square \neg P
$$

3. a) Show that

$$
\{P \rightarrow Q, \neg Q \rightarrow P, R\} \vdash_{\mathbf{K}}\{\neg R \vee Q, \neg Q \vee S\} \Longrightarrow \square Q \wedge S
$$

holds by giving a K-derivation for the formula $\square Q \wedge S$.
b) Show that the following holds.

$$
\{\diamond Q \rightarrow \square Q, Q \rightarrow \neg P\} \vdash_{\mathbf{K}}\{\diamond P\} \Longrightarrow \square \neg Q
$$

Exercise Session 6

1. Show that the following formulas are \mathbf{K}-valid by providing a \mathbf{K}-tableau proof for each formula
a) $\square P \rightarrow \square(Q \rightarrow P)$
b) $\square(P \rightarrow Q) \rightarrow(\neg \square \neg P \rightarrow \neg \square \neg Q)$
c) $(\square P \wedge \square Q) \rightarrow \square(P \wedge Q)$
2. Are the following formulas \mathbf{K}-valid? In each case: if not, give a countermodel, i.e., a model for the negation of the formula
a) $\diamond A \rightarrow \square A$
b) $\diamond \square A \vee \square \diamond \neg A$
c) $(\square \square A \rightarrow \square A) \rightarrow \square(\square A \rightarrow A)$
3. Are the following formulas K-valid? In each case: if not, give a model for the negation of the formula.
a) $(\square(P \rightarrow Q) \rightarrow \square(Q \rightarrow R)) \rightarrow \neg \square(P \rightarrow R)$
b) $(\diamond P \wedge \diamond Q) \rightarrow \diamond(P \wedge Q)$
c) $\square(P \wedge Q) \rightarrow(\square P \wedge \square Q)$

T-79.5101
Advanced Course in Computational Logic
Exercise Session 7

Spring 2008

1. Prove the following claims using tableaux
a) $\diamond(P \vee \diamond \square \square P) \rightarrow \diamond P$ is $\mathbf{S} 4$-valid ($\mathbf{S} 4$ is the set of frames which are reflexive and transitive).
b) $\diamond(\diamond P \rightarrow \square(\diamond P \vee P))$ is \mathbf{T}-valid (\mathbf{T} is the set of reflexive frames)
c) $\square(\square(\square P \wedge Q) \rightarrow \diamond \square \diamond \diamond(P \vee Q))$ is $\mathbf{K B}$-valid ($\mathbf{K B}$ is the set of symmetric frames).
d) $\square P \rightarrow \diamond((P \rightarrow \square Q) \rightarrow Q)$ is $\mathbf{D} 4$-valid (D4 is the set of frames which are serial and transitive).
e) $\diamond(\square \diamond \square P \rightarrow \square P)$ is $\mathbf{S} 5$-valid ($\mathbf{S} 5$ is the set of frames which are reflexive, symmetric, and transitive).
2. Determine using tableaux whether $\diamond P \rightarrow \diamond \square P$ is \mathbf{K}-valid or $\mathbf{K} 4$-valid (\mathbf{K} is the set of all frames and $\mathbf{K} 4$ the set of transitive frames).
3. Show that $\Sigma \models_{\mathbf{K}}\{\neg P\} \Longrightarrow(\diamond P \rightarrow \diamond \diamond P) \wedge \neg P$ holds, where

$$
\Sigma=\{\square P \rightarrow P, \square P \rightarrow \square \square P, \square \neg P \rightarrow \neg P, \square \neg P \rightarrow \square \square \neg P\} .
$$

