T-79.5101 Advanced Course in Computational Logic Exercise Session 1

1. Find a model for the following formulas.

a)
$$\neg ((P \to Q) \to (Q \to P))$$

b) $((P \lor \neg R) \leftrightarrow R) \land (P \to Q)$

2. Does $\neg Q$ follow logically from the set of formulas

$$\Sigma = \{ Q \to P, R \to (P \land Q), P \to (Q \land R) \}$$

Spring 2008

If this is the case, construct an analytic tableau as a proof. If not, give a counterexample.

3. Determine the conjunctive and disjunctive normal forms of the formula

$$(P \to Q) \to (P \lor Q).$$

- 4. Find a model for the following sentence.
 - a) $\exists x_1 \exists x_2 P(x_1, x_2) \land \forall x_1 \forall x_2 (P(x_1, x_2) \rightarrow P(x_2, x_1))$
 - b) $\forall x_1 \exists x_2 P(x_1, x_2) \land \forall x_1 \forall x_2 \forall x_3 (P(x_1, x_2) \land P(x_2, x_3) \rightarrow P(x_1, x_3))$
- 5. Prove the following sentences using the method of analytic tableaux.

a)
$$(\forall x P(x) \land \forall x Q(x)) \rightarrow \forall x (P(x) \lor Q(x))$$

b) $\exists y (\exists x P(x) \rightarrow P(y))$

T-79.5101 Advanced Course in Computational Logic Exercise Session 2

1. Denote the sentence 'agent knows that φ ' by $K\varphi$. What is the meaning of the following formulas in natural language?

(a) $\varphi \to K\varphi$ (b) $\neg K\varphi \to K\neg K\varphi$ (c) $K(\varphi \to \psi) \to (K\varphi \to K\psi)$ (d) $K\varphi \lor K\neg\varphi$

- 2. Denote the sentences 'agent knows that φ ' and ' φ is consistent with the agent's knowledge' by $K\varphi$ and $L\varphi$, respectively. Formalize the following sentences.
 - (a) If φ is true, then it is consistent with the agent's knowledge that agent knows that φ .
 - (b) If φ and ψ are consistent with the agent's knowledge, then $\varphi \wedge \psi$ is consistent with the agent's knowledge.
 - (c) If the agent knows that φ , then φ is consistent with the agent's knowledge.
 - (d) If it is consistent with the agent's knowledge that φ is consistent with the agent's knowledge, then φ is consistent with the agent's knowledge.
- 3. Formalize the following sentences in the language of modal logic.
 - (a) Agent A knows that agent B knows that it's raining, but agent B doesn't know that agent A knows that agent B knows that it is raining.
 - (b) Agent A knows that agent B doesn't know whether it's raining or not.
 - (c) Agent B knows that agent A knows whether it's raining or not.

- (d) Agent A doesn't know whether agent B knows that agent A knows that it's raining.
- 4. Let $\mathcal{M} = \langle S, R, v \rangle$ be a possible world model with

$$\begin{array}{lll} S &=& \{s_1, s_2, s_3\}, \\ R &=& \{\langle s_1, s_2 \rangle, \langle s_1, s_3 \rangle, \langle s_3, s_1 \rangle, \langle s_3, s_3 \rangle\}, \end{array}$$

 $v(s_1, A) = v(s_2, B) = v(s_3, A) =$ true and v(s, P) = false otherwise. Which of the following claims hold?

- (a) $\mathcal{M}, s_1 \models \Box A$
- (b) $\mathcal{M}, s_1 \models \Diamond B \to \Box \Diamond \top$
- (c) $\mathcal{M}, s_3 \models \Diamond \Diamond \Box \bot$
- (d) $\mathcal{M}, s_1 \models \Box(B \lor \Box \diamondsuit A)$
- (e) $\mathcal{M}, s_1 \models \Diamond (\Box A \land \Box \neg A).$

5. Let $\mathcal{M} = \langle S, R, v \rangle$ be a model with

 $S = \{s_1, s_2, s_3, s_4, s_5\},\$

 $\begin{aligned} R &= \{ \langle s_1, s_1 \rangle, \langle s_1, s_2 \rangle, \langle s_1, s_3 \rangle, \langle s_1, s_4 \rangle, \langle s_2, s_3 \rangle, \langle s_3, s_5 \rangle, \langle s_4, s_1 \rangle, \\ & \langle s_4, s_5 \rangle, \langle s_5, s_2 \rangle, \langle s_5, s_5 \rangle \}, \end{aligned}$

 $v(s_1, A) = v(s_4, A) = v(s_5, A) =$ true and v(s, A) = false otherwise. Find a world $s \in S$ in which

$$\mathcal{M}, s \models \Box \Diamond \Box \Diamond A$$

holds.

T-79.5101 Advanced Course in Computational Logic Exercise Session 3

- **1.** Let *A* and *B* be atomic formulas. Show that the following formulas are not valid in all frames (give a counterexample for each formula).
 - a) $\Diamond A \to \Box A$
 - b) $\neg \Box A \rightarrow \Box \neg \Box A$
 - c) $\Diamond(\Diamond A \land \Box A) \to \Box \Diamond A$
 - d) $(\Diamond A \land \Diamond B) \rightarrow \Diamond (A \land B)$
- **2.** Show that the following holds for any formula $A: \diamond \top$ is valid in a model if and only if $\Box A \rightarrow \diamond A$ is valid in the model.
- **3.** Let ϕ denote the formula

 $\Box \left((\Box \Box A \to \Diamond \Box A) \land \Diamond \Box (\Box A \to \Diamond A) \right) \to \left(\Diamond (\Diamond A \to \Box A) \to ((\Diamond A \land \Box \Diamond A) \lor \Diamond \Box \Box \neg A) \right)$

Furthermore, let it be known that ϕ is true in world s_4 of the model $\mathcal{M} = \langle S, R, v \rangle$, where

 $S = \{s_1, s_2, s_3, s_4, s_5\},$ $R = \{\langle s_1, s_1 \rangle, \langle s_1, s_2 \rangle, \langle s_1, s_5 \rangle, \langle s_2, s_5 \rangle, \langle s_3, s_2 \rangle, \langle s_3, s_4 \rangle, \langle s_4, s_3 \rangle, \langle s_4, s_5 \rangle\}$

and $v(s_1, A) = v(s_2, A) = v(s_3, A) =$ true, and $v(s_4, A) = v(s_5, A) =$ false. Find a model \mathcal{M}' with four possible worlds so that ϕ is true in some world of \mathcal{M}' .

- **4.** Let $S = \{s_1, s_2, s_3, s_4\}$ and $R = \{\langle s_1, s_2 \rangle, \langle s_2, s_3 \rangle, \langle s_3, s_4 \rangle, \langle s_4, s_1 \rangle\}$. Find a frame $\langle S', R' \rangle$ which fulfills the following conditions:
 - (i) The frame $\langle S', R' \rangle$ has two possible worlds.
 - (ii) For all formulas P the following holds: If P is valid in ⟨S, R⟩, then P is valid in ⟨S', R'⟩.