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SOLUTIONS

1. (6 points) There are m possible blocks with exactly one non-zero bit. They are all equally
likely. It follows that the entropy of one block is H(P ) = log2(m). Since the blocks are
chosen independently the entropy of the language is equal to

HL = lim
n→∞

H(P n)

n
= lim

n→∞

nH(P )

n
= H(P ) = log2(m),

and from there the redundancy of the language is equal to

RL = 1− HL)

log2 2m
= 1− log2(m)

m
=
m− log2(m)

m
.

The estimate of the unicity distance is now

n0 ≈
m

RL ·m
=

m

m− log2(m)
.

It follows that n0 ≤ 2 if and only if log2(m) ≤ m/2. This holds for all positive integers
except for m = 3, since log2(3) ≈ 1, 585.

2. If we decrypt y1 and y2 with the correct partial key K2, we get dK2(y1) = x1 ⊕K1 and
dK2(y2) = x2 ⊕K1. Hence for the correct key K2 we have

dK2(y1)⊕ dK2(y2) = x1 ⊕ x2.

Based on this observation we can test for a 64-bit key candidate Z whether the equality

dZ(y1)⊕ dZ(y2) = x1 ⊕ x2.

holds. The correct key Z = K2 always passes the test. The solution is unique if none of
the other candidates passes the test. When estimating the probability that the solution
is unique, we may assume that for a wrong key Z the value dZ(y1) ⊕ dZ(y2) is a value
that is selected uniformly at random. The probability that it equals x1⊕x2 can therefore
be assumed to be 2−64. Hence the probability that none of the 264 − 1 wrong keys hits
x1 ⊕ x2 is approximately equal to

(1− 1

264
)264−1 ≈ e−1.

After K2 is found, then K1 can be computed as K1 = dK2(y1)⊕ x1.

1



3. (6 points) The 3rd term of the ciphertext sequence is y3 = β3 + x3 = 0111 = x2 + x+ 1.
Given the nature of the plaintext language, it follows that exactly one of the following
holds:

β3 = 1111

β3 = 0011

β3 = 0101

β3 = 0110

An equation may give solutions for β only if the order of the element on the right hand
side divides |FF∗|/3 = 5, or, what is equivalent, the element is in the image of the mapping
z → z3 in FF. Let us compute the image of z → z3. We know that it has five different
non-zero elements:

0001 0001
0010 x3 = 1000
0011 (x+ 1)3 = x3 + x2 + x+ 1 = 1111
0100 x6 = x2(x+ 1) = x3 + x2 = 1100
0101 . . . = 1010
0110 . . . =0001
0111 . . . = 0001
1000 (x3)3 = x(x+ 1)2 = 1010
1001 (x3 + 1)3 = . . . = 1111
1010 . . . = 1111
1011 . . . = 1100
1100 . . . = 1000
1101 . . . = 1010
1110 x3(x2 + x+ 1)3 = x3 = 1000
1111 . . . = 1100

It follows that β3 = 1111 and the three possible values of β are 0011, 1001 and 1010.

4. By Fermat’s theorem (Corollary 5.6)

481525 = 1250100 = 1 (mod50101).

It follows that the order of 4815 in ZZ∗50101 divides 25, and therefore it is equal to 1, 5 or
25. It cannot be equal to 1, since 4815 6= 1 (mod50101). We compute 48155 = 46880 6=
1 (mod50101) to see that the order of 4815 cannot be 5. It follows that the order is 25.

5. We use Shanks’ algorithm with α = 4815, G =< α > in ZZ∗50101, n = 25, and β = 48794.
Then m = d

√
25e = 5, and αm = 48155 = 46880 (mod50101). The first list L1 is then as

follows:

j 46880j mod 50101
0 1
1 46880
2 3934
3 4139
4 45248

To compute the second list we compute first 4815−1 mod 50101.
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6. The Extended Euclidean algorithm gives:

i ri qi ti
0 50101 - 0
1 4815 10 1
2 1951 2 -10
3 913 2 21
4 125 7 -52
5 38 3 385
6 11 3 -1207
7 5 2 4006
8 1 -9219

It follows that 4815−1 mod 50101 = −9219 = 40882. Then

i 48794 · 4815−i mod 50101
0 48794
1 48794 · 40882 = 24993
2 24993 · 40882 = 4032
3 4032 · 40882 = 3934
...

...

from where we see that the solution is i = 3 and j = 2 from where x = j · m + i =
2 · 5 + 3 = 13.
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