TIK-110.503 Foundations of Cryptology Final exam January 29, 2000 SOLUTIONS

1. Given a key K = (a, b) the encryption transformation is $e_K(x) = ax + b \mod 27$. From the given plaintext we get two equations for solving the key:

 $a \cdot 17 + b \equiv 17 \pmod{27}$ $a \cdot 14 + b \equiv 11 \pmod{27}$

from where

$$a \cdot 3 \equiv 6 \pmod{27}$$
, or equivalently, $a \equiv 2 \pmod{9}$.

Hence, we get three solutions modulo 27: a = 2, 11, or 20. The corresponding solutions for b are b = 10, 19, and 1, respectively. When decrypting the ciphertext, the key (a, b) = (11, 19) = L.T. reveals the survivor's name **ROBINSON CRUSOE**. (Linus Torvalds was one of the developers of the new processor "Crusoe" at Transmeta.)

2. Let A_k be the event that a plaintext block has exactly k zeroes. Let B_k be the event that the ciphertext has k zeroes, k = 0, 1, ..., 8. Then using the definition of conditional probability

$$p(z = 0 | B_k) = \frac{p(z = 0, B_k)}{p(B_k)} = \frac{p(z = 0, A_k)}{p(z = 0, A_k) + p(z = 1, A_{8-k})}$$

= $\frac{p(z = 0)p(A_k)}{p(z = 0)p(A_k) + p(z = 1)p(A_{8-k}))} = \frac{\frac{1}{2}p^k(1 - p)^{8-k}}{\frac{1}{2}p^k(1 - p)^{8-k} + p^{8-k}(1 - p)^k}$
= $\frac{1}{1 + \left(\frac{p}{1-p}\right)^{8-2k}},$

since $p(z=0) = p(z=1) = \frac{1}{2}$, and the key is independent of the plaintext. If $p < \frac{1}{2}$, that is p < 1-p, then the conditional probability of z=0 decreases with k and is maximized with k=0. If $p > \frac{1}{2}$, that is p > 1-p, then the conditional probability of z=0 increases with k and is maximized with k=8. If $p=\frac{1}{2}$, that is p=1-p, then the conditional probability of z=0 equals $\frac{1}{2}$, for all $k=0,1,\ldots,8$. In this case we do not get any information about the key by counting the number of xeroes and ones in the ciphertext. Note also that, for all values of $p, p \neq 0, 1$, a ciphertext, which has four zeroes and four ones, does not give any information about the key, that is, $p(z=0 | B_4) = \frac{1}{2}$.

- 3. a) See the text book.
 - b) $\left(\frac{2}{21}\right) = -1$, since $21 \equiv 3 \pmod{8}$. On the other hand, $2^{\frac{21-1}{2}} = 1024 \equiv 16 \pmod{21}$. Since $\left(\frac{2}{21}\right) \neq 2^{\frac{21-1}{2}}$, we conclude that 21 is not Euler pseudo-prime to the base 2.

4. $2000 = 16 \cdot 125$, and gcd(16,125) = 1. We need to find a number a such that

$$a - 29 \equiv 0 \pmod{16}$$

 $a + 29 \equiv 0 \pmod{125},$

or what is the same,

$$a \equiv 13 \pmod{16}$$

 $a \equiv 96 \pmod{125}.$

The solution is $a = 221 = 96 + 125 = 13 + 13 \cdot 16$, which verifies the condition $221^2 \equiv 841 \pmod{2000}$. Clearly also $-a = 1779 \pmod{2000}$ is a solution.

5. a) Your public key is

$$\beta = \alpha^a = x^7 = x^3 x^4 = x^3 (x+1) = x^4 + x^3 = x^3 + x + 1 = 1011.$$

b) First you compute, using your secret key, $\beta^k = (\alpha^k)^a = (x^2)^7 = x^{14}$. Then you observe that $x^{14}x = x^{15} = 1$, or what is the same, $\beta^{-k} = x$. Hence $X = X(\beta^k x) = (X\beta^k)x = (x^3 + x^2 + x)x = x^4 + x^3 + x^2 = x^3 + x^2 + x + 1 = 1111$.