1. Given a key $K=(a, b)$ the encryption transformation is $e_{K}(x)=a x+b \bmod 27$. From the given plaintext we get two equations for solving the key:

$$
\begin{aligned}
& a \cdot 17+b \equiv 17(\bmod 27) \\
& a \cdot 14+b \equiv 11(\bmod 27)
\end{aligned}
$$

from where

$$
a \cdot 3 \equiv 6(\bmod 27), \text { or equivalently, } a \equiv 2(\bmod 9) .
$$

Hence, we get three solutions modulo 27 : $a=2$, 11 , or 20 . The corresponding solutions for b are $b=10,19$, and 1 , respectively. When decrypting the ciphertext, the key $(a, b)=(11,19)=$ L.T. reveals the survivor's name ROBINSON CRUSOE. (Linus Torvalds was one of the developers of the new processor "Crusoe" at Transmeta.)
2. Let A_{k} be the event that a plaintext block has exactly k zeroes. Let B_{k} be the event that the ciphertext has k zeroes, $k=0,1, \ldots, 8$. Then using the definition of conditional probability

$$
\begin{aligned}
& p\left(z=0 \mid B_{k}\right)=\frac{p\left(z=0, B_{k}\right)}{p\left(B_{k}\right)}=\frac{p\left(z=0, A_{k}\right)}{p\left(z=0, A_{k}\right)+p\left(z=1, A_{8-k}\right)} \\
& =\frac{p(z=0) p\left(A_{k}\right)}{\left.p(z=0) p\left(A_{k}\right)+p(z=1) p\left(A_{8-k}\right)\right)}=\frac{\frac{1}{2} p^{k}(1-p)^{8-k}}{\frac{1}{2} p^{k}(1-p)^{8-k}+p^{8-k}(1-p)^{k}} \\
& =\frac{1}{1+\left(\frac{p}{1-p}\right)^{8-2 k}},
\end{aligned}
$$

since $p(z=0)=p(z=1)=\frac{1}{2}$, and the key is independent of the plaintext. If $p<\frac{1}{2}$, that is $p<1-p$, then the conditional probability of $z=0$ decreases with k and is maximized with $k=0$. If $p>\frac{1}{2}$, that is $p>1-p$, then the conditional probability of $z=0$ increases with k and is maximized with $k=8$. If $p=\frac{1}{2}$, that is $p=1-p$, then the conditional probability of $z=0$ equals $\frac{1}{2}$, for all $k=0,1, \ldots, 8$. In this case we do not get any information about the key by counting the number of xeroes and ones in the ciphertext. Note also that, for all values of $p, p \neq 0,1$, a ciphertext, which has four zeroes and four ones, does not give any information about the key, that is, $p\left(z=0 \mid B_{4}\right)=\frac{1}{2}$.
3. a) See the text book.
b) $\left(\frac{2}{21}\right)=-1$, since $21 \equiv 3(\bmod 8)$. On the other hand, $2^{\frac{21-1}{2}}=1024 \equiv 16(\bmod$ 21). Since $\left(\frac{2}{21}\right) \neq 2^{\frac{21-1}{2}}$, we conclude that 21 is not Euler pseudo-prime to the base 2.
4. $2000=16 \cdot 125$, and $\operatorname{gcd}(16,125)=1$. We need to find a number a such that

$$
\begin{aligned}
a-29 & \equiv 0(\bmod 16) \\
a+29 & \equiv 0(\bmod 125)
\end{aligned}
$$

or what is the same,

$$
\begin{aligned}
a & \equiv 13(\bmod 16) \\
a & \equiv 96(\bmod 125)
\end{aligned}
$$

The solution is $a=221=96+125=13+13 \cdot 16$, which verifies the condition $221^{2} \equiv 841(\bmod 2000)$. Clearly also $-a=1779(\bmod 2000)$ is a solution.
5. a) Your public key is

$$
\beta=\alpha^{a}=x^{7}=x^{3} x^{4}=x^{3}(x+1)=x^{4}+x^{3}=x^{3}+x+1=1011 .
$$

b) First you compute, using your secret key, $\beta^{k}=\left(\alpha^{k}\right)^{a}=\left(x^{2}\right)^{7}=x^{14}$. Then you observe that $x^{14} x=x^{15}=1$, or what is the same, $\beta^{-k}=x$. Hence $X=X\left(\beta^{k} x\right)=\left(X \beta^{k}\right) x=\left(x^{3}+x^{2}+x\right) x=x^{4}+x^{3}+x^{2}=x^{3}+x^{2}+x+1=1111$.

