1. The bit length of DES key is 56 bits and DES block is 64 bits.
a) There are $|\mathcal{P}|=4$ possible plaintext blocks of four bits. Hence the redundancy of the plaintext is $R_{L}=1-\frac{\log _{2}|\mathcal{P}|}{\log _{2} 2^{4}}=1-\frac{2}{4}=\frac{1}{2}$. Hence the unicity distance is $n_{0}=\frac{\log _{2} 2^{56}}{R_{L} \log _{2} 2^{64}}=1.75$ DES blocks $=112$ bits.
b) Now there are $|\mathcal{P}|=4 \cdot 16=2^{6}$ possible plaintext blocks of eight bits. Hence the redundancy of the plaintext is $R_{L}=1-\frac{\log _{2}|\mathcal{P}|}{\log _{2} 2^{8}}=1-\frac{6}{8}=\frac{1}{4}$. Hence the unicity distance is $n_{0}=$ $\frac{\log _{2} 2^{56}}{R_{L} \log _{2} 2^{64}}=3.5$ DES blocks $=224$ bits.
2. Observe that if, for all $i=1, \ldots, r$, there is a round key K_{i}^{\prime} such that

$$
\begin{equation*}
F_{i}\left(c\left(R_{i-1}\right) \oplus K_{i}^{\prime}\right)=F_{i}\left(R_{i-1} \oplus K_{i}\right) \tag{1}
\end{equation*}
$$

then we have

$$
\begin{aligned}
c\left(L_{i}\right) & =c\left(R_{i-1}\right) \\
c\left(R_{i}\right) & =c\left(L_{i-1}\right) \oplus F_{i}\left(c\left(R_{i-1}\right) \oplus K_{i}^{\prime}\right)
\end{aligned}
$$

for all i, and consequently the plaintext $\mathrm{c}(\mathrm{X})$ is encrypted to $\mathrm{c}(\mathrm{Y})$. Clearly, $K_{i}^{\prime}=c\left(K_{i}\right)$ satisfies condition (1). (See also Stinson, Exercise 3.2.)
3. Recall that 1999 is prime. Note also that $1999 \equiv 3(\bmod 4)$.
a) 12 is a quadratic non-residue modulo 1999 if and only if the Legendre symbol $\left(\frac{12}{1999}\right)$ is equal to -1 . We compute the Legendre (Jacobi) symbol:

$$
\left(\frac{12}{1999}\right)=\left(\frac{2}{1999}\right)^{2}\left(\frac{3}{1999}\right)=\left(\frac{3}{1999}\right)=-\left(\frac{1999}{3}\right)=-\left(\frac{1}{3}\right)=-1 .
$$

b) Writing the congruence $16^{x} \equiv 12(\bmod 1999)$ in the form $\left(4^{x}\right)^{2} \equiv 12(\bmod 1999)$ we see that it has solutions only if 12 is a quadratic residue modulo 1999. Hence, by a), the congruence does not have solutions.
4. First, using the Chinese Remainder Theorem, we find $y, 0<y<n_{1} \cdot n_{2}$ such that $y \equiv y_{i}(\bmod$ n_{i}). For this purpose, we need to compute the inverses of the moduli with respect to each other. Denote $u=2183^{-1} \bmod 2173=10^{-1} \bmod 2173$. Then $10 \cdot u=1+2173 \cdot k$, for some integer k. Clearly $k=3$ works, because $3 \cdot 3=9=-1(\bmod 10)$, and we get $u=652$. Similarily, denote $v=2173^{-1} \bmod 2183=(-10)^{-1} \bmod 2183$. Then $10 \cdot v=-1+2183 \cdot k$, for some suitable k. Now $k=7$ works, because $3 \cdot 7=1(\bmod 10)$, and we get $v=(2183 \cdot 7-1) / 10=1528$. Using CRT, we get $y=2027 \cdot 652 \cdot 2183+1111 \cdot 2173 \cdot 1528 \bmod 4743659=3996001=(1999)^{2}$. We get $x=1999$.
5. Element $\alpha=x$ is primitive and generates the entire $G F\left(2^{4}\right)^{*}$ with polynomial $x^{4}+x+1$:

$$
\begin{aligned}
\alpha^{0} & =1 \\
\alpha^{1} & =x \\
\alpha^{2} & =x^{2} \\
\alpha^{3} & =x^{3} \\
\alpha^{4} & =x+1 \\
\alpha^{5} & =x^{2}+x
\end{aligned}
$$

$$
\begin{aligned}
\alpha^{6} & =x^{3}+x^{2} \\
\alpha^{7} & =x^{3}+x+1 \\
\alpha^{8} & =x^{2}+1 \\
\alpha^{9} & =x^{3}+x \\
\alpha^{10} & =x^{2}+x+1 \\
\alpha^{11} & =x^{3}+x^{2}+1 \\
\alpha^{12} & =x^{3}+x^{2}+x+1 \\
\alpha^{13} & =x^{3}+x^{2}+1 \\
\alpha^{14} & =x^{3}+1 \\
\alpha^{15} & =1
\end{aligned}
$$

The order of the entire multiplicative group is 15 . Hence it has strict subgroups of orders 1,3 and 5 , which we denote by S_{1}, S_{3} and S_{5}, respectively. The generators of these groups are 1, $\alpha^{15 / 3}=\alpha^{5}$ and $\alpha^{15 / 5}=\alpha^{3}$ (also respectively). We obtain:

$$
\begin{aligned}
& S_{1}=\{1\} \\
& S_{3}=\left\{1, x^{2}+x, x^{2}+x+1\right\} \\
& S_{5}=\left\{1, x^{3}, x^{3}+x^{2}, x^{3}+x, x^{3}+x^{2}+x+1\right\} .
\end{aligned}
$$

