TIK-110.503 Foundations of Cryptology Final exam 16.12.1999

- 1. The bit length of DES key is 56 bits and DES block is 64 bits.
 - a) There are $|\mathcal{P}| = 4$ possible plaintext blocks of four bits. Hence the redundancy of the plaintext is $R_L = 1 \frac{\log_2 |\mathcal{P}|}{\log_2 2^4} = 1 \frac{2}{4} = \frac{1}{2}$. Hence the unicity distance is $n_0 = \frac{\log_2 2^{56}}{R_L \log_2 2^{64}} = 1.75$ DES blocks = 112 bits.
 - b) Now there are $|\mathcal{P}| = 4 \cdot 16 = 2^6$ possible plaintext blocks of eight bits. Hence the redundancy of the plaintext is $R_L = 1 \frac{\log_2 |\mathcal{P}|}{\log_2 2^8} = 1 \frac{6}{8} = \frac{1}{4}$. Hence the unicity distance is $n_0 = \frac{\log_2 2^{56}}{R_L \log_2 2^{64}} = 3.5$ DES blocks = 224 bits.
- 2. Observe that if, for all i = 1, ..., r, there is a round key K'_i such that

$$F_i(c(R_{i-1}) \oplus K'_i) = F_i(R_{i-1} \oplus K_i) \tag{1}$$

then we have

$$egin{array}{rcl} c(L_i) &=& c(R_{i-1}) \ c(R_i) &=& c(L_{i-1}) \oplus F_i(c(R_{i-1}) \oplus K'_i), \end{array}$$

for all *i*, and consequently the plaintext c(X) is encrypted to c(Y). Clearly, $K'_i = c(K_i)$ satisfies condition (1). (See also Stinson, Exercise 3.2.)

- 3. Recall that 1999 is prime. Note also that $1999 \equiv 3 \pmod{4}$.
 - a) 12 is a quadratic non-residue modulo 1999 if and only if the Legendre symbol $\left(\frac{12}{1999}\right)$ is equal to -1. We compute the Legendre (Jacobi) symbol:

$$\left(\frac{12}{1999}\right) = \left(\frac{2}{1999}\right)^2 \left(\frac{3}{1999}\right) = \left(\frac{3}{1999}\right) = -\left(\frac{1999}{3}\right) = -\left(\frac{1}{3}\right) = -1.$$

- b) Writing the congruence $16^x \equiv 12 \pmod{1999}$ in the form $(4^x)^2 \equiv 12 \pmod{1999}$ we see that it has solutions only if 12 is a quadratic residue modulo 1999. Hence, by a), the congruence does not have solutions.
- 4. First, using the Chinese Remainder Theorem, we find y, $0 < y < n_1 \cdot n_2$ such that $y \equiv y_i \pmod{n_i}$. For this purpose, we need to compute the inverses of the moduli with respect to each other. Denote $u = 2183^{-1} \mod 2173 = 10^{-1} \mod 2173$. Then $10 \cdot u = 1 + 2173 \cdot k$, for some integer k. Clearly k = 3 works, because $3 \cdot 3 = 9 = -1 \pmod{10}$, and we get u = 652. Similarly, denote $v = 2173^{-1} \mod 2183 = (-10)^{-1} \mod 2183$. Then $10 \cdot v = -1 + 2183 \cdot k$, for some suitable k. Now k = 7 works, because $3 \cdot 7 = 1 \pmod{10}$, and we get $v = (2183 \cdot 7 - 1)/10 = 1528$. Using CRT, we get $y = 2027 \cdot 652 \cdot 2183 + 1111 \cdot 2173 \cdot 1528 \mod 4743659 = 3996001 = (1999)^2$. We get x = 1999.
- 5. Element $\alpha = x$ is primitive and generates the entire $GF(2^4)^*$ with polynomial $x^4 + x + 1$:

$$\begin{array}{rcl} \alpha^0 &=& 1\\ \alpha^1 &=& x\\ \alpha^2 &=& x^2\\ \alpha^3 &=& x^3\\ \alpha^4 &=& x+1\\ \alpha^5 &=& x^2+x \end{array}$$

$$\begin{array}{rcl} \alpha^{6} & = & x^{3} + x^{2} \\ \alpha^{7} & = & x^{3} + x + 1 \\ \alpha^{8} & = & x^{2} + 1 \\ \alpha^{9} & = & x^{3} + x \\ \alpha^{10} & = & x^{2} + x + 1 \\ \alpha^{11} & = & x^{3} + x^{2} + 1 \\ \alpha^{12} & = & x^{3} + x^{2} + x + 1 \\ \alpha^{13} & = & x^{3} + x^{2} + 1 \\ \alpha^{14} & = & x^{3} + 1 \\ \alpha^{15} & = & 1 \end{array}$$

The order of the entire multiplicative group is 15. Hence it has strict subgroups of orders 1, 3 and 5, which we denote by S_1 , S_3 and S_5 , respectively. The generators of these groups are 1, $\alpha^{15/3} = \alpha^5$ and $\alpha^{15/5} = \alpha^3$ (also respectively). We obtain:

$$\begin{array}{rcl} S_1 &=& \{1\} \\ S_3 &=& \{1, x^2 + x, x^2 + x + 1\} \\ S_5 &=& \{1, x^3, x^3 + x^2, x^3 + x, x^3 + x^2 + x + 1\}. \end{array}$$