T-79.503 Foundations of Cryptology Exam January 11 2005

SOLUTIONS

- 2. (a) For a' = 010, we get

	x	x + a'	t(x)	t(x+a')	t(x+a')+t(x)
Ĩ	000	010	0	0	0
	001	011	0	1	1
	010	000	0	0	0
	011	001	1	0	1
	100	110	0	1	1
	101	111	1	1	0
	110	100	1	0	1
	111	101	1	1	0

It follows that $N_D(010, b') = 4$, for b' = 0 or b' = 1. For a' = 111, we get

x	x + a'	t(x)	t(x+a')	t(x+a')+t(x)
000	111	0	1	1
001	110	0	1	1
010	101	0	1	1
011	100	1	0	1
100	011	0	1	1
101	010	1	0	1
110	001	1	0	1
111	000	1	0	1

It follows that $N_D(111, b') = 8$, for b' = 1, and $N_D(111, b') = 0$, or b' = 0.

- (b) An intrepretation of the result $N_D(111, 1) = 8$ is that output is complemented as all input bits are complemented. See also the table for a' = 111.
- 3. We have $1000 = 2^3 5^3 = 8 \cdot 125$. We compute $\phi(8) = \phi(2^3) = 2^3(1 1/2) = 4$ and $\phi(125) = \phi(5^3) = 5^3(1 1/5) = 100$.

To compute $x = 2005^{2005}$ modulo 1000, we compute it first modulo 8 and then modulo 125, and combine the results using the Chinese Remainder Theorem. As $2005 \equiv 1 \mod \phi(8)$ we get

$$2005^{2005} \equiv 5^1 \equiv 5 \pmod{8}.$$

Since $\phi(125) = 100$, we get

$$2005^{2005} \equiv 5^5 = 125 \cdot 25 \equiv 0 \pmod{125}$$

So we have

$$\begin{array}{rcl} x &\equiv & 0 \pmod{125} \\ x &\equiv & 5 \pmod{8}. \end{array}$$

Since $125 \equiv 5 \pmod{8}$ it follows that x = 125.

An alternative solution is obtained by observing that, for $n \ge 3$, we have $5^n \mod 1000 = 625$, if n is even, and $5^n \mod 1000 = 125$, if n is odd.

4. (a)

$$\begin{pmatrix} \frac{801}{2005} \end{pmatrix} = \begin{pmatrix} \frac{2005}{801} \end{pmatrix} = \begin{pmatrix} \frac{403}{801} \end{pmatrix} = \begin{pmatrix} \frac{801}{403} \end{pmatrix} = \begin{pmatrix} \frac{398}{403} \end{pmatrix} = \begin{pmatrix} \frac{2}{403} \end{pmatrix} \begin{pmatrix} \frac{199}{403} \end{pmatrix} = -\begin{pmatrix} \frac{199}{403} \end{pmatrix}$$
$$= \begin{pmatrix} \frac{403}{199} \end{pmatrix} = \begin{pmatrix} \frac{5}{199} \end{pmatrix} = \begin{pmatrix} \frac{199}{5} \end{pmatrix} = \begin{pmatrix} \frac{4}{5} \end{pmatrix} = \begin{pmatrix} \frac{2}{5} \end{pmatrix}^2 = 1$$

using the properties of the Jacobi symbol.

(b)
$$\frac{n-1}{2} = 1002 = 2 \cdot 501$$
. We get
 $801^{1002} = (801^2)^{501} = (1)^{501} = 1 \pmod{2005}$.

By (a) we have

$$\left(\frac{801}{2005}\right) = 1 = 801^{\frac{2005-1}{2}}$$

and hence 2005 is an Euler pseudo prime to the base 801.

5. Running Wiener's algorithm we get:

j	r_j	q_j	c_{j}	d_j	n'
0	117353	-	1	0	-
1	400271	0	0	1	-
2	117353	3	1	3	352058
3	48212	2	2	7	410735
4	20929	2	5	17	399000
5	6354	:	:	:	÷

For each j the test value n' is computed as $n' = (d_j b - 1)/c_j$. For j = 4 the candidate value n' = 399000. Substituting the values n = 400271 and n' = 399000 to the equation $x^2 - (n - n' + 1)x + n = 0$ we get

 $x^2 - 1272x + 400271 = 0,$

from where the solutions (= values of p and q) are $x = 636 \pm 65$. The value of the private exponent is a = 17. We also see that $\phi(n) = n' = 399000$.