SOLUTIONS

1. The first output sequence is $\begin{array}{llllll}1 & 1 & 1 & \ldots\end{array}$ of period length 1 , and it can also be generated using an LFSR of length 1 with polynomial $x+1$ which is a divisor of polynomial $f(x)=$ $x^{3}+x^{2}+x+1=(x+1)^{3}$. The second output sequence is 01011111000100 11 | $010 \ldots$ of period length 15 . It follows that the sum sequence can be generated with an LFSR of length 5 with feedback polynomial $\operatorname{lcm}(x+1, g(x))=(x+1)\left(x^{4}+x+1\right)=$ $x^{5}+x^{4}+x^{2}+1$. This is the shortest length, because the sum sequence has 4 consecutive zeros. The feedback polynomial of degree 5 is uniquely determined as soon as at least 10 terms of the sequence are given.
2. (a) For $a^{\prime}=010$, we get

x	$x+a^{\prime}$	$t(x)$	$t\left(x+a^{\prime}\right)$	$t\left(x+a^{\prime}\right)+t(x)$
000	010	0	0	0
001	011	0	1	1
010	000	0	0	0
011	001	1	0	1
100	110	0	1	1
101	111	1	1	0
110	100	1	0	1
111	101	1	1	0

It follows that $N_{D}\left(010, b^{\prime}\right)=4$, for $b^{\prime}=0$ or $b^{\prime}=1$.
For $a^{\prime}=111$, we get

x	$x+a^{\prime}$	$t(x)$	$t\left(x+a^{\prime}\right)$	$t\left(x+a^{\prime}\right)+t(x)$
000	111	0	1	1
001	110	0	1	1
010	101	0	1	1
011	100	1	0	1
100	011	0	1	1
101	010	1	0	1
110	001	1	0	1
111	000	1	0	1

It follows that $N_{D}\left(111, b^{\prime}\right)=8$, for $b^{\prime}=1$, and $N_{D}\left(111, b^{\prime}\right)=0$, or $b^{\prime}=0$.
(b) An intrepretation of the result $N_{D}(111,1)=8$ is that output is complemented as all input bits are complemented. See also the table for $a^{\prime}=111$.
3. We have $1000=2^{3} 5^{3}=8 \cdot 125$. We compute $\phi(8)=\phi\left(2^{3}\right)=2^{3}(1-1 / 2)=4$ and $\phi(125)=\phi\left(5^{3}\right)=5^{3}(1-1 / 5)=100$.

To compute $x=2005^{2005}$ modulo 1000, we compute it first modulo 8 and then modulo 125 , and combine the results using the Chinese Remainder Theorem. As $2005 \equiv 1 \bmod \phi(8)$ we get

$$
2005^{2005} \equiv 5^{1} \equiv 5(\bmod 8)
$$

Since $\phi(125)=100$, we get

$$
2005^{2005} \equiv 5^{5}=125 \cdot 25 \equiv 0(\bmod 125)
$$

So we have

$$
\begin{aligned}
& x \equiv 0(\bmod 125) \\
& x \equiv 5(\bmod 8)
\end{aligned}
$$

Since $125 \equiv 5(\bmod 8)$ it follows that $x=125$.
An alternative solution is obtained by observing that, for $n \geq 3$, we have $5^{n} \bmod 1000=$ 625 , if n is even, and $5^{n} \bmod 1000=125$, if n is odd.
4. (a)

$$
\begin{aligned}
\left(\frac{801}{2005}\right)=\left(\frac{2005}{801}\right)=\left(\frac{403}{801}\right) & =\left(\frac{801}{403}\right)=\left(\frac{398}{403}\right)=\left(\frac{2}{403}\right)\left(\frac{199}{403}\right)=-\left(\frac{199}{403}\right) \\
& =\left(\frac{403}{199}\right)=\left(\frac{5}{199}\right)=\left(\frac{199}{5}\right)=\left(\frac{4}{5}\right)=\left(\frac{2}{5}\right)^{2}=1
\end{aligned}
$$

using the properties of the Jacobi symbol.
(b) $\frac{n-1}{2}=1002=2 \cdot 501$. We get

$$
801^{1002}=\left(801^{2}\right)^{501}=(1)^{501}=1(\bmod 2005)
$$

By (a) we have

$$
\left(\frac{801}{2005}\right)=1=801 \frac{2005-1}{2}
$$

and hence 2005 is an Euler pseudo prime to the base 801.
5. Running Wiener's algorithm we get:

j	r_{j}	q_{j}	c_{j}	d_{j}	n^{\prime}
0	117353	-	1	0	-
1	400271	0	0	1	-
2	117353	3	1	3	352058
3	48212	2	2	7	410735
4	20929	2	5	17	399000
5	6354	\vdots	\vdots	\vdots	\vdots

For each j the test value n^{\prime} is computed as $n^{\prime}=\left(d_{j} b-1\right) / c_{j}$. For $j=4$ the candidate value $n^{\prime}=399000$. Substituting the values $n=400271$ and $n^{\prime}=399000$ to the equation $x^{2}-\left(n-n^{\prime}+1\right) x+n=0$ we get

$$
x^{2}-1272 x+400271=0,
$$

from where the solutions ($=$ values of p and q) are $x=636 \pm 65$. The value of the private exponent is $a=17$. We also see that $\phi(n)=n^{\prime}=399000$.

