1. Who is the inventor, who borrowed the name of his new invention from the famous survivor
```
RLD ABLAIORXBLJ ?
```

At least you should be able to derive the inventor's initials, which are used as a key when the survivor's name was encrypted using the affine cipher on an alphabet of 27 letters. The first two letters of the survivor's name are RO. The plaintext and ciphertext alphabet consists of the 26 letters A - Z and the space between words. These 27 symbols are converted to integers modulo 27 as follows:

A	B	C	D	E	F	G	H	I	J	K	L	M	
0	1	2	3	4	5	6	7	8	9	10	11	12	
N	O	P	Q	R	S	T	U	V	W	X	Y	Z	"space"
13	14	15	16	17	18	19	20	21	22	23	24	25	26

2. Plaintext is formed by independent bits arranged in blocks of eight bits. The probability that a plaintext bit equals 0 is p. Each block $x_{1}, x_{2}, \ldots, x_{8}$ is encrypted using one key bit z by adding it modulo 2 to each plaintext bit. Hence the ciphertext block is $y_{1}, y_{2}, \ldots, y_{8}$ where $y_{i}=x_{i} \oplus z, i=1,2, \ldots, 8$. It is assumed that each key bit is generated uniformly at random and independently of the plaintext. Assume you see a ciphertext block with k zeroes and $8-k$ ones, $k=0,1,2, \ldots, 8$. Determine the probability that the key bit was $z=0$. What kind of ciphertext maximizes this probability?
3. a) Give the Solovay-Strassen primality test for an odd integer $n, n>1$.
b) Is 21 Euler pseudo-prime to the base 2?
4. Number 29 is square root of 841 . Find some other number which is square root of 841 modulo 2000. Hint: Recall that if m_{1} divides $a-b$ and m_{2} divides $a+b$, and $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$, then $a^{2} \equiv b^{2}\left(\bmod m_{1} m_{2}\right)$.
5. Consider ElGamal Public-key Cryptosystem in Galois field GF $\left(2^{4}\right)$ with polynomial $x^{4}+x+1$ and with the primitive element $\alpha=0010=x$. Your private key is $a=7$.
a) Compute your public key β.
b) Decrypt ciphertext $(0100,1110)$ using your secret key. Recall that given a plaintext X the ciphertext is $\left(\alpha^{k}, X \beta^{k}\right)$ where the integer k is known only to the encryptor.
