TIK-110.503 Basics of Cryptology
Final exam
December 16, 2000

1. (6 points) Define a stream cipher as follows:

$$
\begin{aligned}
\mathcal{P} & =\mathcal{C}=\mathbb{Z}_{7}, \mathcal{K}=\{(a, b) \mid \operatorname{gcd}(a, 7)=1\} \\
z_{i} & =(a \times i+b) \bmod 7, i=1,2, \ldots, \text { where }(a, b) \text { is the key. } \\
e_{z}(x) & =(x+z) \bmod 7
\end{aligned}
$$

a) Using $(5,3)$ as the key, compute the decryption of the message 25542531.
b) If you know that some part of the plaintext is 110503 , and this encrypts to give the ciphertext 501153 , then derive as much as you can about the unknown key (a, b). What additional information you need to derive the entire key?
2. (6 points) Given positive integers n and r and a combiner function $f: \mathbb{Z}_{2}^{n} \times \mathcal{K} \rightarrow \mathbb{Z}_{2}^{n}$ a Feistel cipher is defined as follows: $L_{i}=R_{i-1}, R_{i}=L_{i-1} \oplus f\left(R_{i-1}, K_{i}\right)$, where $K_{i} \in \mathbb{Z}_{2}^{n}$, and $i=1,2, \ldots, r$, and $L_{j}, R_{j} \in \mathbb{Z}_{2}^{n}, j=0,1,2, \ldots, r$. The plaintext is $X=\left(L_{0}, R_{0}\right)$ and the ciphertext is $Y=\left(R_{r}, L_{r}\right)$.
Consider a Feistel cipher as follows. Use $n=3$ for the half-block size, and $r=2$ rounds, and use independent 3 -bit round keys K_{1} and K_{2}. We define the combiner function f by $f(A, K)=F(A \oplus K)$, where $F(x)=x^{3}$ in the Galois field $G F\left(2^{3}\right)$ with the polynomial $x^{3}+x+1$.
a) Describe a known plaintext attack against this cipher that will recover the secret key.
b) Carry out the attack on the plaintext/ciphertext pair

$$
\begin{aligned}
X & =000000 \\
Y & =111111
\end{aligned}
$$

3. (6 points) The T function used in the hash-function SHA- 1 is defined as follows. Let X_{0}, X_{1}, X_{2} be three 32-bit blocks. Then $T\left(X_{0}, X_{1}, X_{2}\right)=\left(X_{0} \wedge X_{1}\right) \vee\left(X_{0} \wedge X_{2}\right) \vee\left(X_{1} \wedge X_{2}\right)$, where \wedge is bitwise "and" multiplication, and \vee is bitwise "or" addition.

Let $t\left(x_{0}, x_{1}, x_{2}\right)$ denote the Boolean function of three variables which is the one-bit component of T. Let $L_{w}\left(x_{0}, x_{1}, x_{2}\right)=w_{0} x_{0} \oplus w_{1} x_{1} \oplus w_{2} x_{2}$, for $w=\left(w_{0}, w_{1}, w_{2}\right) \in \mathbb{Z}_{2}{ }^{3}$. Show that the function t has the following correlations with the linear functions L_{w} :

$$
c\left(t, L_{w}\right)=\left\{\begin{aligned}
0, & \text { if } H_{W}(w)=0 \text { or } 2 \\
\frac{1}{2}, & \text { if } H_{W}(w)=1 \\
-\frac{1}{2}, & \text { if } H_{W}(w)=3
\end{aligned}\right.
$$

4. (6 points) Bob is using the Rabin public key cryptosystem with $n=1999 \times 499$ and $B=0$. Find the four possible decryptions of the ciphertext $y=2000$.
5. (6 points) Suppose Bob is using the El Gamal Signature Scheme in \mathbb{Z}_{p}, and he signs two messages x_{1} and x_{2} with signatures $\left(\gamma_{1}, \delta_{1}\right)$ and $\left(\gamma_{2}, \delta_{2}\right)$, respectively. Alice sees the messages and their respective signatures, and she sees that $\gamma_{1}=\gamma_{2}$.
a) Describe how Alice can now derive information about Bob's private key.
b) Suppose $p=13, x_{1}=1, x_{2}=4, \delta_{1}=11$, and $\delta_{2}=2$, and $\gamma_{1}=\gamma_{2}=7$. What can Alice say about Bob's private key?
(For your convenience: $\gamma=\alpha^{k} \bmod p$ and $\delta=(x-a \gamma) k^{-1} \bmod (p-1)$.)
