T-79.503 [old: T-110.503] Foundations of Cryptology Exam 12.01.2004

- 1. (6 points) A 4-stage linear feedback shift register generates a sequence 1 0 1 0 0 0 1 0. Determine the feedback constants c_0 , c_1 , c_2 and c_3 .
- 2. Consider the finite field $\mathbb{F} = \mathbb{Z}_2[x]/(x^3 + x + 1)$.
 - a) (2 points) Create the look-up table for the function $f: z \mapsto z^3$ in \mathbb{F} .
 - b) (2 points) Let $f_1(z)$ denote the rightmost bit of the output f(z) of function f. Compute the algebraic normal form for f_1 .
 - c) (2 points) Show that the rightmost bit of the difference f(z + 001) + f(z) is always equal to 1.
- 3. (6 points) It is given that

 $2^{48} \equiv 443 \pmod{1201},$

where 1201 is a prime. Show that the element $\alpha = 443$ is of order 25 in the multiplicative group \mathbb{Z}_{1201}^* .

4. (6 points) Using Shanks' algorithm attempt to determine x such that

 $443^x \equiv 489 \pmod{1201}$.

Note that if this congruence has solutions, then according to problem 3 (see above) one solution is a positive integer less than 25.

5. (6 points) Alice is using the RSA Cryptosystem and her modulus is $n = 334501 = 167 \cdot 2003$. Decrypt the ciphertext y = 2003.