1. (6 points) A 4-stage linear feedback shift register generates a sequence 101000 10 . Determine the feedback constants c_{0}, c_{1}, c_{2} and c_{3}.
2. Consider the finite field $\mathbb{F}=\mathbb{Z}_{2}[x] /\left(x^{3}+x+1\right)$.
a) (2 points) Create the look-up table for the function $f: z \mapsto z^{3}$ in \mathbb{F}.
b) (2 points) Let $f_{1}(z)$ denote the rightmost bit of the output $f(z)$ of function f. Compute the algebraic normal form for f_{1}.
c) (2 points) Show that the rightmost bit of the difference $f(z+001)+f(z)$ is always equal to 1 .
3. (6 points) It is given that

$$
2^{48} \equiv 443(\bmod 1201)
$$

where 1201 is a prime. Show that the element $\alpha=443$ is of order 25 in the multiplicative group \mathbb{Z}_{1201}^{*}.
4. (6 points) Using Shanks' algorithm attempt to determine x such that

$$
443^{x} \equiv 489(\bmod 1201)
$$

Note that if this congruence has solutions, then according to problem 3 (see above) one solution is a positive integer less than 25 .
5. (6 points) Alice is using the RSA Cryptosystem and her modulus is $n=334501=$ $167 \cdot 2003$. Decrypt the ciphertext $y=2003$.

