T-79.503 Foundations of Cryptology Exam January 11, 2005

- 1. (6p.) Consider two binary linear feedback shift registers with polynomials $f(x) = x^3 + x^2 + x + 1$ and $g(x) = x^4 + x + 1$. Initialize the first register with 111, and the second one with 0101 (the registers are shifted to left). Generate the two output sequences and take their xor-sum sequence. Determine the unique shortest linear feedback shift register that generates the sum-sequence.
- 2. Consider the "threshold function" $t: (\mathbb{Z}_2)^3 \to \mathbb{Z}_2, t(x_1, x_2, x_3) = x_1x_2 + x_2x_3 + x_1x_3,$ where the bit operations are the usual modulo 2 addition and multiplication.
 - (a) (3p.) Create the values of the difference distribution table $N_D(a', b')$ of the function t, for a' = 010 and a' = 111 and all $b' \in \mathbb{Z}_2$.
 - (b) (3p.) Show that t preserves complementation, that is, if each input bit is complemented then the output is complemented.
- 3. (6p.) Determine the three least significant decimal digits of the integer 2005^{2005} .
- 4. (6p.)
 - (a) Evaluate the Jacobi symbol

$$\left(\frac{801}{2005}\right).$$

You should not do any factoring other than dividing out powers of 2.

- (b) Show that 2005 is an Euler pseudoprime to the base 801.
- 5. (6p.) Suppose that n = 400271 is the modulus and b = 117353 is the public exponent in the *RSA Cryptosystem*. Using Wiener's Algorithm, attempt to factor n. If you succeed, determine also the secret exponent a and $\phi(n)$.