T-79.503 Foundations of Cryptology
Exam
January 11, 2005

1. (6p.) Consider two binary linear feedback shift registers with polynomials $f(x)=$ $x^{3}+x^{2}+x+1$ and $g(x)=x^{4}+x+1$. Initialize the first register with 111 , and the second one with 0101 (the registers are shifted to left). Generate the two output sequences and take their xor-sum sequence. Determine the unique shortest linear feedback shift register that generates the sum-sequence.
2. Consider the "threshold function" $t:\left(\mathbb{Z}_{2}\right)^{3} \rightarrow \mathbb{Z}_{2}, t\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}$, where the bit operations are the usual modulo 2 addition and multiplication.
(a) (3p.) Create the values of the difference distribution table $N_{D}\left(a^{\prime}, b^{\prime}\right)$ of the function t, for $a^{\prime}=010$ and $a^{\prime}=111$ and all $b^{\prime} \in \mathbb{Z}_{2}$.
(b) (3p.) Show that t preserves complementation, that is, if each input bit is complemented then the output is complemented.
3. (6p.) Determine the three least significant decimal digits of the integer 2005^{2005}.
4. (6p.)
(a) Evaluate the Jacobi symbol

$$
\left(\frac{801}{2005}\right)
$$

You should not do any factoring other than dividing out powers of 2 .
(b) Show that 2005 is an Euler pseudoprime to the base 801.
5. (6p.) Suppose that $n=400271$ is the modulus and $b=117353$ is the public exponent in the RSA Cryptosystem. Using Wiener's Algorithm, attempt to factor n. If you succeed, determine also the secret exponent a and $\phi(n)$.

