T-110.503 Basics of Cryptology
Exam
9.5.2003

1. Consider a binary LFSR with connection polynomial $x^{4}+x^{3}+x^{2}+x+1$.
a) (3 points) Show that the periods of the binary sequences generated by this LFSR are 1 and 5.
b) (3 points) Consider a stream cipher where the keystream is generated as output of this LFSR. The first 19 bits of the ciphertext sequence are

0110001100011000110

and it is given that the 16th, 17th, 18th and 19th plaintext bits are 0000 . Decrypt the ciphertext.
2. Consider a cryptosystem where $\mathcal{P}=\{A, B\}$ and $\mathcal{C}=\{a, b, c\}, \mathcal{K}=\{1,2,3,4\}$, and the encryption mappings e_{K} are defined as follows:

K	$e_{K}(A)$	$e_{K}(B)$
1	a	b
2	b	c
3	b	a
4	c	a

The keys are chosen with equal probability.
a) (3 points) Show that

$$
\operatorname{Pr}[\mathbf{x}=A \mid \mathbf{y}=b]=\frac{2 \operatorname{Pr}[\mathbf{x}=A]}{1+\operatorname{Pr}[\mathbf{x}=A]}
$$

b) (3 points) Does this cryptosystem have perfect secrecy?
3. Consider a finite field $\mathbb{F}=\mathbb{Z}_{2}[x] /\left(x^{3}+x+1\right)$. Let an S-box with three input bits and three output bits be defined using the function $\pi_{S}(w)=w^{3}$, for $w \in \mathbb{F}$. For example, if $w=011=x+1$ then $\pi_{S}(w)=\pi_{S}(x+1)=(x+1)^{3}=x^{3}+x^{2}+x+1=x^{2}=100$.
a) (3 points) Let $a^{\prime}=100=x^{2}$. Show that

$$
\pi_{S}\left(w+a^{\prime}\right)+\pi(w)=x^{2} w^{2}+\left(x^{2}+x\right) w+x^{2}+1, \text { for all } w \in \mathbb{F} .
$$

b) (3 points) Compute the row of the Difference Distribution Table of π_{S} corresponding to the input difference $a^{\prime}=100$. Note that you can use the result of item a).
4. (6 points) Consider $p=2003$, which is a prime. Find an element of order $q=11$ in the multiplicative group \mathbb{Z}_{2003}^{*}.
5. (6 points) Suppose that $n=355044523$ is the modulus and $b=311711321$ is the public exponent in the RSA Cryptosystem. Using Wiener's Algorithm, attempt to factor n.

