TIK-110.503 Basics of Cryptology
Final exam
April 7, 2001

1. (6 points) Plaintext consists of equally likely strings of m bits with a single 1 bit. In each string the other $m-1$ bits are zeros.
a) Determine the plaintext redundancy.
b) This plaintext is encrypted using a cryptosystem with $|\mathcal{P}|=|\mathcal{C}|=|\mathcal{K}|=2^{m}$. Show that the unicity distance $n_{0} \leq 2$, for all positive integers m except for $m=3$. (Hint: $\log _{2} 3 \approx 1.585$.)
2. (6 points) Given a positive integer r and a combiner function $f: \mathbb{Z}_{26} \times \mathbb{Z}_{26} \rightarrow \mathbb{Z}_{26}$ we define a kind of Feistel cipher as follows:

$$
\begin{aligned}
L_{i} & =R_{i-1} \\
R_{i} & =\left(L_{i-1}+f\left(R_{i-1}, K_{i}\right)\right) \bmod 26,
\end{aligned}
$$

where $K_{i} \in \mathbb{Z}_{26}$, and $i=1,2, \ldots, r$, and $L_{j}, R_{j} \in \mathbb{Z}_{26}, j=0,1,2, \ldots, r$. The plaintext is (L_{0}, R_{0}) and the ciphertext is $\left(L_{r}, R_{r}\right)$.

Consider a case where $r=2, K_{1}=K_{2}=K$, and the combiner function f is defined as $f(X, K)=(X \times K) \bmod 26$. The plaintext is $(17,13)$ and the ciphertext is $(4,13)$. Determine the key K.
3. (6 points) Let $n=p q$, where p and q are prime. We assume that $p>q>2$ and denote the difference $p-q$ by d. Note that then d is positive and even.
a) Let us assume that n and d are given. Show how then p and q can be computed.
b) If n is given, and it is known that d is small, then one can try all possible values for d and compute the factors p and q. Use this method to factor 4003997.
4. (6 points) The modulus is $2001=3 \times 23 \times 29$. Does the congruence equation

$$
x^{4} \equiv 7(\bmod 2001)
$$

have integer solutions for x ?
5. (6 points) Consider ElGamal Public-key Cryptosystem in Galois field GF (2^{4}) with polynomial $x^{4}+x+1$ and with the primitive element $\alpha=0010=x$. Your private key is $a=7$.
a) Compute your public key β.
b) Decrypt ciphertext $(0100,1110)$ using your secret key. Recall that given a plaintext X the ciphertext is $\left(\alpha^{k}, X \beta^{k}\right)$, where the integer k is known only to the encryptor.

