T-79.503 Foundations of Cryptology Homework 11 December 2, 2004

- 1. Suppose that n = 355044523 is the modulus and b = 311711321 is the public exponent in the RSA Cryptosystem. Using Wiener's Algorithm, attempt to factor n. If you succeed, determine also the secret exponent a and $\phi(n)$.
- 2. Bob and Bart are using the Rabin Cryptosystem. Bob's modulus is $n_1 = 2183$ and Bart's modulus is $n_2 = 2279$. Alice wants to encrypt an integer x, 0 < x < 2183, to both of them. She sends ciphertext $y_1 = 1479$ to Bob and the ciphertext $y_2 = 418$ to Bart. Determine x. You can find the solution without factorisation of the moduli.
- 3. Consider ElGamal Public-key Cryptosystem in Galois field $GF(2^4)$ with polynomial $x^4 + x + 1$ and with the primitive element $\alpha = 0010 = x$. Your private key is a = 7.
 - a) Compute your public key β .
 - b) Decrypt ciphertext (0100,1110) using your secret key.
- 4. It is given that

 $2^{48} \equiv 443 \pmod{1201},$

where 1201 is a prime. Show that the element $\alpha = 443$ is of order 25 in the multiplicative group \mathbb{Z}_{1201}^* .

5. Using Shanks' algorithm attempt to determine x such that

 $443^x \equiv 489 \pmod{1201}$.

Hint: Determine first the order n of the cyclic group G generated by α .

6. (Stinson 6.4 (a)) Suppose that p is an odd prime and k is a positive integer. The multiplicative group $\mathbb{Z}_{p^k}^*$ has order $\phi(p^k) = p^{k-1}(p-1)$, and is known to be cyclic. A generator of this group is called a *primitive element modulo* p^k . Suppose that α is a primitive element modulo p. Prove that at least one of α or $\alpha + p$ is a primitive element modulo p^2 .