1. Suppose that $n=355044523$ is the modulus and $b=311711321$ is the public exponent in the RSA Cryptosystem. Using Wiener's Algorithm, attempt to factor n. If you succeed, determine also the secret exponent a and $\phi(n)$.
2. Bob and Bart are using the Rabin Cryptosystem. Bob's modulus is $n_{1}=2183$ and Bart's modulus is $n_{2}=2279$. Alice wants to encrypt an integer $x, 0<x<2183$, to both of them. She sends ciphertext $y_{1}=1479$ to Bob and the ciphertext $y_{2}=418$ to Bart. Determine x. You can find the solution without factorisation of the moduli.
3. Consider ElGamal Public-key Cryptosystem in Galois field $\mathrm{GF}\left(2^{4}\right)$ with polynomial $x^{4}+$ $x+1$ and with the primitive element $\alpha=0010=x$. Your private key is $a=7$.
a) Compute your public key β.
b) Decrypt ciphertext $(0100,1110)$ using your secret key.
4. It is given that

$$
2^{48} \equiv 443(\bmod 1201)
$$

where 1201 is a prime. Show that the element $\alpha=443$ is of order 25 in the multiplicative group \mathbb{Z}_{1201}^{*}.
5. Using Shanks' algorithm attempt to determine x such that

$$
443^{x} \equiv 489(\bmod 1201)
$$

Hint: Determine first the order n of the cyclic group G generated by α.
6. (Stinson 6.4 (a)) Suppose that p is an odd prime and k is a positive integer. The multiplicative group $\mathbb{Z}_{p^{k}}^{*}$ has order $\phi\left(p^{k}\right)=p^{k-1}(p-1)$, and is known to be cyclic. A generator of this group is called a primitive element modulo p^{k}. Suppose that α is a primitive element modulo p. Prove that at least one of α or $\alpha+p$ is a primitive element modulo p^{2}.

