T-79.503 Fundamentals of Cryptology
Homework 9
November 18, 2004

1. (Stinson 5.10) Suppose that $n=p q$ where p and q are distinct odd primes and $a b \equiv 1(\bmod$ $(p-1)(q-1))$. The RSA encryption operation is $e(x)=x^{b} \bmod n$ and the decryption operation is $d(y)=y^{a} \bmod n$. In the text-book it is proved that $d(e(x))=x$ if $x \in \mathbb{Z}_{n}^{*}$. Prove that the same statement is true for any $x \in \mathbb{Z}_{n}$.
2. Alice is using the RSA Cryptosystem and her modulus is $n=p q=167 \times 2003=334501$. Decrypt the ciphertext $y=2003$.
3. a) Use the square-and-multiply algorithm to compute $2^{615} \bmod 667$.
b) Determine $2^{-1} \bmod 667$. Compare this with a) and explain the result.
4. (Stinson 5.14) Show that RSA encryption is multiplicative, that is, $e_{K}\left(x_{1} x_{2}\right)=e_{K}\left(x_{1}\right) e_{K}\left(x_{2}\right)$, for each $x_{1}, x_{2} \in \mathcal{P}$. Using this property, prove that RSA Cryptosystem is not secure against a chosen ciphertext attack. In particular, show that an attacker can decrypt a given ciphertext y by obtaining the decryption \hat{x} of a different ciphertext \hat{y}.
5. A prime p is said to be a safe prime if $(p-1) / 2$ is a prime.
a) Let p be a safe prime, that is, $p=2 q+1$ where q is a prime. Prove that an element in \mathbb{Z}_{p} has multiplicative order q if and only if it is a quadratic residue and not equal to $1 \bmod p$.
b) The integer 08012003 is a safe prime, since 4006001 is a prime. Find some element of multiplicative order 4006001 in $\mathbb{Z}_{8012003}$.
