1. Compute $\operatorname{gcd}(9211,4880)$, and find integers s and t such that $9211 s+4880 t=$ $\operatorname{gcd}(9211,4880)$.
2. Solve the following system of congruences

$$
\begin{aligned}
& 15 x \equiv 12(\bmod 2003) \\
& 11 x \equiv 5(\bmod 2004)
\end{aligned}
$$

3. a) Compute $\phi(100)$.
b) Determine the two least significant decimal digits of the integer 2004^{2004}.
4. (Stinson 5.9) Suppose that $p=2 q+1$, where p and q are odd primes. Suppose further that $\alpha \in \mathbb{Z}_{p}^{*}, \alpha \neq \pm 1(\bmod p)$. Prove that α is a primitive element modulo p if and only if $\alpha^{q} \equiv-1(\bmod p)$.
5. Find the smallest primitive element in \mathbb{Z}_{23}^{*}. (Hint: use the result of problem 4.) What are the orders of elements 2 and 4? Give 2 and 4 as powers of the smallest primitive element.
6. It is given that

$$
2^{48} \equiv 443(\bmod 1201),
$$

where 1201 is prime. Show that the element $\alpha=443$ has multiplictive order 25 in the group \mathbb{Z}_{1201}^{*}.

