T-79.503 Foundations of Cryptology Homework 5 October 21, 2004

1. (Stinson 3.11 a)) The DES S-box S_4 has some unusual properties:

7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14

Prove that the second row of S_4 can be obtained from the first row by means of the following mapping:

$$(y_1, y_2, y_3, y_4) \mapsto (y_2, y_1, y_4, y_3) \oplus (0, 1, 1, 0)$$

2. Consider the 4-bit to 4-bit function f determined by the third row of S-box S_1 of DES:

4 1 E 8 D 6 2 B F C 9 7 3 A 5 0

Let us set a = 4 = 0100. Which values the difference $f(x \oplus a) \oplus f(x)$ takes as x varies through all sixteen values $x = (x_1, x_2, x_3, x_4)$?

3. (cf. Stinson Exercise 3.3) Consider a Feistel cipher, where the *i*th round is defined as follows:

$$L_i = R_{i-1}$$

$$R_i = L_{i-1} \oplus F_i(R_{i-1} \oplus K_i),$$

where K_i is the round key and F_i is the round function. Given a bit sequence A we denote by c(A) the bit sequence obtained by complementing the bits of A, for example, if A = 001, then c(A) = 110. Let $Y = (L_r, R_r)$ be the ciphertext obtained by encrypting the plaintext $X = (L_0, R_0)$ (= concatenation of L_0 and R_0) using the r-round Feistel cipher with round keys K_1, K_2, \ldots, K_r . Show that then the plaintext c(X) encrypted using the round keys $c(K_1), c(K_2), \ldots, c(K_r)$ gives the ciphertext c(Y).

4. Given a positive integer r and a combiner function $f : \mathbb{Z}_{26} \times \mathbb{Z}_{26} \to \mathbb{Z}_{26}$ we define a kind of *Feistel cipher* as follows:

$$L_i = R_{i-1},$$

$$R_i = (L_{i-1} + f(R_{i-1}, K_i)) \mod 26,$$

where $K_i \in \mathbb{Z}_{26}$, and i = 1, 2, ..., r, and $L_j, R_j \in \mathbb{Z}_{26}$, j = 0, 1, 2, ..., r. The plaintext is (L_0, R_0) and the ciphertext is (L_r, R_r) .

Consider a case where r = 3 and the combiner function f is defined as $f(X, K) = (X \times K) \mod 26$. The plaintext is (21,10) and the ciphertext is (13,21). Apply the meetin-the-middle solution to find the keys K_1 and K_3 . (Create tables as depicted in Figure 1, and find K_1 and K_3 such that $D(K_1) = D(K_3)$.

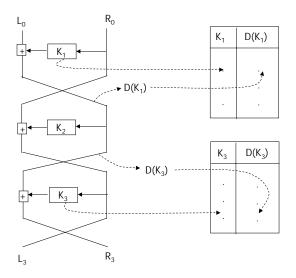


Figure 1: Meet-in-the-Middle solution

- 5. a) What happens if the function f(R, K) in DES produces an output of all zeros?
 - b) For a fixed right hand side R_{i-1} in DES, how may choices are there for the round key K_i for which the output $f(R_{i-1}, K_i)$ will produce an output of all zeros?
 - c) (EXTRA) For a fixed round key K_i , how many choices are there for the right hand side R_{i-1} for which the output $f(R_{i-1}, K_i)$ will produce an output of all zeros? NOTE: Your answer cannot be given in any simple form, but what can you say about the number of such values? Also, how many are there when the input K_i is all zeros?
- 6. (Stinson 3.7) Suppose a sequence of plaintext blocks, $x_1, x_2, ..., x_n$ yields the ciphertext sequence $y_1, y_2, ..., y_n$. Suppose that one ciphertext block, say y_i , is transmitted incorrectly (i.e., some 1's are changed to 0's and vice versa). Show that the number of plaintex blocks that will be decrypted incorrectly is equal to 1 if ECB or OFB modes are used for encryption; and equal to two if CBC or CFB modes are used.