1. Let S be a sequence of bits, with linear complexity L. Its complemented sequence \bar{S} is the sequence obtained from S by complementing its bits, that is, by adding 1 modulo 2 to each bit.
a) Show that $L C(\bar{S}) \leq L+1$.
b) Show that $L C(\bar{S})=L-1$, or L, or $L+1$.
2. a) Prove: If $\Omega(f) \subset \Omega(g)$, then $f(x)$ divides $g(x)$. Hint: Handout 1, Theorem 1
b) Prove: For all $S(x) \in \Omega(f)$ also $\bar{S}(x) \in \Omega(f)$, if and only if $x+1$ divides $f(x)$. (Here $\bar{S}(x)$ denotes the complemented sequence of $S(x)$.)
3. Find the LFSR asked in HW02 Problem 4 using Berlekamp-Massey algorithm.
4. For each of the following 5-bit sequences determine its linear complexity and find one of the shortest LFSR that generates the sequence.
a) 00111
b) 00011
c) 11100

Find also an LFSR which generates all these sequences.
5. Linear recurrence sequences can be considered also over other rings than just \mathbb{Z}_{2}. Consider $\mathbb{Z}_{3}=\{0,1,2\}$ and a sequence $z_{0}, z_{1}, z_{2}, \ldots$ generated recursively using the equation $z_{k+3}=$ $2 z_{k+2}+z_{k+1}+z_{k}$ where all calculations are done mod 3 . This corresponds to polynomial equation $x^{3}=2 x^{2}+x+1$ what is equivalent to $x^{3}+x^{2}+2 x+2=0$. The generating polynomial is now $f(x)=x^{3}+x^{2}+2 x+2$, where the coefficients are in $\mathbb{Z}_{3}=\{0,1,2\}$.
a) $x+2$ divides $f(x)$. Find the second factor of $f(x)$.
b) Find the periods of the generated sequences.
6. Consider a cryptosystem where $\mathcal{P}=\{A, B\}$ and $\mathcal{C}=\{a, b, c\}, \mathcal{K}=\{1,2,3,4\}$, and the encryption mappings e_{K} are defined as follows:

K	$e_{K}(A)$	$e_{K}(B)$
1	a	b
2	b	c
3	b	a
4	c	a

The keys are chosen with equal probability.
a) Show that

$$
\operatorname{Pr}[\mathbf{x}=A \mid \mathbf{y}=b]=\frac{2 \operatorname{Pr}[\mathbf{x}=A]}{1+\operatorname{Pr}[\mathbf{x}=A]}
$$

b) Does this cryptosystem have perfect secrecy?

