T-79.503 Foundations of Cryptology Homework 3 October 7, 2004

- 1. Let S be a sequence of bits, with linear complexity L. Its complemented sequence \bar{S} is the sequence obtained from S by complementing its bits, that is, by adding 1 modulo 2 to each bit.
 - a) Show that $LC(\bar{S}) \leq L+1$.
 - b) Show that $LC(\overline{S}) = L 1$, or L, or L + 1.
- 2. a) Prove: If $\Omega(f) \subset \Omega(g)$, then f(x) divides g(x). Hint: Handout 1, Theorem 1
 - b) Prove: For all $S(x) \in \Omega(f)$ also $\overline{S}(x) \in \Omega(f)$, if and only if x + 1 divides f(x). (Here $\overline{S}(x)$ denotes the complemented sequence of S(x).)
- 3. Find the LFSR asked in HW02 Problem 4 using Berlekamp-Massey algorithm.
- 4. For each of the following 5-bit sequences determine its linear complexity and find one of the shortest LFSR that generates the sequence.
 - a) 0 0 1 1 1
 - b) 0 0 0 1 1
 - c) 1 1 1 0 0

Find also an LFSR which generates all these sequences.

- 5. Linear recurrence sequences can be considered also over other rings than just \mathbb{Z}_2 . Consider $\mathbb{Z}_3 = \{0, 1, 2\}$ and a sequence $z_0, z_1, z_2, ...$ generated recursively using the equation $z_{k+3} = 2z_{k+2} + z_{k+1} + z_k$ where all calculations are done mod 3. This corresponds to polynomial equation $x^3 = 2x^2 + x + 1$ what is equivalent to $x^3 + x^2 + 2x + 2 = 0$. The generating polynomial is now $f(x) = x^3 + x^2 + 2x + 2$, where the coefficients are in $\mathbb{Z}_3 = \{0, 1, 2\}$.
 - a) x + 2 divides f(x). Find the second factor of f(x).
 - b) Find the periods of the generated sequences.
- 6. Consider a cryptosystem where $\mathcal{P} = \{A, B\}$ and $\mathcal{C} = \{a, b, c\}, \mathcal{K} = \{1, 2, 3, 4\}$, and the encryption mappings e_K are defined as follows:

K	$e_K(A)$	$e_K(B)$
1	a	b
2	b	с
3	b	a
4	с	a

The keys are chosen with equal probability.

a) Show that

$$\mathbf{Pr}[\mathbf{x} = A | \mathbf{y} = b] = \frac{2\mathbf{Pr}[\mathbf{x} = A]}{1 + \mathbf{Pr}[\mathbf{x} = A]}.$$

b) Does this cryptosystem have perfect secrecy?