1. Let E be the elliptic curve $y^{2}=x^{3}+x+13$ defined over \mathbb{Z}_{31} (see Homework 11).
a) Show that $34(9,10)=\mathcal{O}$.
b) Show that $(9,10)$ is an element of order 34 with respect to the elliptic curve group operation.
2. (Stinson 6.18)
a) Determine the NAF representation of the integer 87 .
b) Using the NAF representation of 87 , use Algorithm 6.5 to compute $87 P$, where $P=(2,6)$ is a point on the elliptic curve $y^{2}=x^{3}+x+26$ defined over \mathbb{Z}_{127}. Show the partial results during each iteration of the algorithm.
3. Consider $p=2003$, which is a prime. Find an element of order $q=11$ in the multiplicative group \mathbb{Z}_{2003}^{*}.
4. Consider a variation of El Gamal Signature Scheme in $G F\left(2^{n}\right)$. The public parameters are n, q and α, where q is a divisor of $2^{n}-1$ and α is an element of $G F\left(2^{n}\right)$ of multiplicative order q. A user's secret key is $a \in \mathbb{Z}_{q}$ and the public key β is computed as $\beta=\alpha^{a}$. To generate a signature for message x a user with secret key a generates a secret value $k \in \mathbb{Z}_{q}^{*}$ and computes the signature (γ, δ) as

$$
\begin{aligned}
\gamma & =\alpha^{k}\left(\operatorname{in} G F\left(2^{n}\right)\right) \\
\delta & =\left(x-a \gamma^{\prime}\right) k^{-1} \bmod q
\end{aligned}
$$

where γ^{\prime} is an integer representation of γ. Suppose Bob is using this signature scheme, and he signs two messages x_{1} and x_{2}, and gets signatures $\left(\gamma_{1}, \delta_{1}\right)$ and $\left(\gamma_{2}, \delta_{2}\right)$, respectively. Alice sees the messages and their respective signatures, and she observes that $\gamma_{1}=\gamma_{2}$.
a) Describe how Alice can now derive information about Bob's private key.
b) Suppose $n=8, q=15, x_{1}=1, x_{2}=4, \delta_{1}=11, \delta_{2}=2$, and $\gamma_{1}^{\prime}=\gamma_{2}^{\prime}=7$. What Alice can say about Bob's private key?
5. Consider a variation of the ElGamal Signature Scheme giving message recovery. The public parameters of this scheme are odd primes p and q such that q divides $p-1$, and an element α of the field \mathbb{Z}_{p} such that the multiplicative order of α is equal to q. A user's private key is an integer a such that $1<a<q$, and the user's public key β is computed as $\beta=\alpha^{a} \bmod p$. A signature of a message $x \in \mathbb{Z}_{q}$ is a pair (γ, δ), where $\gamma \in \mathbb{Z}_{q}$ and $\delta \in \mathbb{Z}_{q}$ are produced as follows: The user generates a secret random integer k such that $1<k<q$ and computes

$$
\begin{aligned}
\gamma & =\left(x-\left(\alpha^{k} \bmod p\right)\right) \bmod q \\
\delta & =(k-a \gamma) \bmod q
\end{aligned}
$$

a) Show how the message x can be recovered from the signature (γ, δ) given the public parameters p, q, α and β.
b) Let $p=1999$ and $q=37$. Show that the multiplicative order of the element $\alpha=$ $2^{54} \bmod 1999=1278$ is equal to 37 .
c) Using parameters p, q and α given above in b), generate a secret and a public key for yourself.
d) Generate your signature for a message $x \in \mathbb{Z}_{37}$ of your choice.

