T-79.503 Foundations of Cryptology Homework 11 November 26, 2003

- 1. Consider the *ElGamal Public-key Cryptosystem* in the finite field $\mathbb{Z}_2[x]/(x^3 + x + 1)$. The private key is a = 3 and the primitive element is $\alpha = 010$. Compute the public key β , and decrypt the ciphertext (110, 110).
- 2. Solve the congruence

 $3^x \equiv 24 \pmod{31}$

using

- a) Shanks' algorithm; and
- b) the Pohlig-Hellman algorithm.
- 3. Solve the congruence

$$3^x \equiv 135 \pmod{353}$$

using the Pohlig-Hellman algorithm.

- 4. (Stinson 6.4 (a)) Suppose that p is an odd prime and k is a positive integer. The multiplicative group $\mathbb{Z}_{p^k}^*$ has order $\phi(p^k) = p^{k-1}(p-1)$, and is known to be cyclic. A generator of this group is called a *primitive element modulo* p^k . Suppose that α is a primitive element modulo p. Prove that at least one of α or $\alpha + p$ is a primitive element modulo p^2 .
- 5. Let E be the elliptic curve $y^2 = x^3 + x + 13$ defined over \mathbb{Z}_{31} .
 - a) Determine the quadratic residues modulo 31.
 - b) Determine the points on E.
- 6. Let p be prime and p > 3. Show that the following elliptic curves over \mathbb{Z}_p have p + 1 points:
 - a) $y^2 = x^3 x$, for $p \equiv 3 \pmod{4}$. Hint: Show that from the two values $\pm r$ for $x \neq 0$ exactly one gives a quadratic residue modulo p.
 - b) $y^2 = x^3 1$, for $p \equiv 2 \pmod{3}$. Hint: If $p \equiv 2 \pmod{3}$, then the mapping $x \mapsto x^3$ is a bijection in \mathbb{Z}_p .