November 26, 2003

1. Consider the ElGamal Public-key Cryptosystem in the finite field $\mathbb{Z}_{2}[x] /\left(x^{3}+x+1\right)$. The private key is $a=3$ and the primitive element is $\alpha=010$. Compute the public key β, and decrypt the ciphertext $(110,110)$.
2. Solve the congruence

$$
3^{x} \equiv 24(\bmod 31)
$$

using
a) Shanks' algorithm; and
b) the Pohlig-Hellman algorithm.
3. Solve the congruence

$$
3^{x} \equiv 135(\bmod 353)
$$

using the Pohlig-Hellman algorithm.
4. (Stinson 6.4 (a)) Suppose that p is an odd prime and k is a positive integer. The multiplicative group $\mathbb{Z}_{p^{k}}^{*}$ has order $\phi\left(p^{k}\right)=p^{k-1}(p-1)$, and is known to be cyclic. A generator of this group is called a primitive element modulo p^{k}. Suppose that α is a primitive element modulo p. Prove that at least one of α or $\alpha+p$ is a primitive element modulo p^{2}.
5. Let E be the elliptic curve $y^{2}=x^{3}+x+13$ defined over \mathbb{Z}_{31}.
a) Determine the quadratic residues modulo 31 .
b) Determine the points on E.
6. Let p be prime and $p>3$. Show that the following elliptic curves over \mathbb{Z}_{p} have $p+1$ points:
a) $y^{2}=x^{3}-x$, for $p \equiv 3(\bmod 4)$. Hint: Show that from the two values $\pm r$ for $x \neq 0$ exactly one gives a quadratic residue modulo p.
b) $y^{2}=x^{3}-1$, for $p \equiv 2(\bmod 3)$. Hint: If $p \equiv 2(\bmod 3)$, then the mapping $x \mapsto x^{3}$ is a bijection in \mathbb{Z}_{p}.

