T-79.503 Foundations of Cryptology

Homework 10
November 19, 2003

1. (Stinson 5.24) Suppose throughout this question that p is an odd prime and $\operatorname{gcd}(a, p)=$ 1.
a) Suppose that $i \geq 2$ and $b^{2} \equiv a\left(\bmod p^{i-1}\right)$. Prove that there is a unique $x \in \mathbb{Z}_{p}^{i}$, such that $x^{2} \equiv a\left(\bmod p^{i}\right)$ and $x \equiv b\left(\bmod p^{i-1}\right)$. Describe how this x can be computed efficiently.
b) Illustrate your method in the following situation: starting with the congruence $6^{2} \equiv 17(\bmod 19)$, find square roots of 17 modulo 19^{2} and modulo 19^{3}.
2. (exam 8 Jan 2002) The module is $2002=2 \times 7 \times 11 \times 13$. Compute some nontrivial solution to the congruence

$$
x^{8} \equiv 1(\bmod 2002),
$$

that is, a solution different from ± 1 modulo 2002.
3. (exam 4 Sept 2002) The module is $2002=2 \times 7 \times 11 \times 13$.
a) What is the number of solutions of the congruence

$$
x^{4} \equiv 9(\bmod 2002)
$$

b) What is the number of solutions of the congruence

$$
x^{9} \equiv 4(\bmod 2002)
$$

4. Compute

$$
2^{120}(\bmod 122183) .
$$

Then using the $p-1$ method, attempt to factor 122183 .
5. Suppose that $n=84773093$ and $b=37869107$ in the RSA Cryptosystem. Using Wiener's Algorithm, attempt to factor n. If you succeed, determine the secret exponent a and $\phi(n)$.
6. The integers 26945 and 459312 are square roots of the integer 80833 modulo 540143. Compute the prime factors of 540143 .
7. Bob and Bart are using the Rabin Cryptosystem. Bob's modulus is $n_{1}=2183$ and Bart's modulus is $n_{2}=2173$. Alice wants to encrypt an integer $x, 0<x<2173$, to both of them. She sends ciphertext $y_{1}=1111$ to Bob and the ciphertext $y_{2}=2027$ to Bart. Determine x. (You can ignore the fact that the prime factors of the moduli are not congruent to $3(\bmod 4)$ as usually is the case in Rabin cryptosystem. Also, you should find the solution without factoring the moduli.)

