T-79.503 Fundamentals of Cryptology Homework 8 November 5, 2002

1. The standard hash-function SHA-1 makes use of two non-linear combination functions. The first of them, G, was examined at the lecture. The second one is denoted by T and it is defined as follows. Let X_0, X_1, X_2 be three 32-bit words. Then

 $T(X_0, X_1, X_2) = (X_0 \land X_1) \lor (X_0 \land X_2) \lor (X_1 \land X_2)$

Let t denote the one-bit component of T.

- a) Create the value table for t. (This function is also known as the "threshold-function". It takes the value "1" exactly when at least two of the input-variables take the value "1".)
- b) Compute the difference distribution table $N_D(a', b')$ of t. (Note that t can be considered as an S-box with three-bit input and one-bit output.)
- c) A linear structure of a Boolean function f of three variables is defined as a vector $w = (w_1, w_2, w_3) \neq (0, 0, 0)$ such that $f(x \oplus w) \oplus f(x)$ is constant. Show that t has exactly one linear structure.
- 2. (Stinson 4.11) A message authentication code can be produced by using a block cipher in CFB mode instead of CBC mode. Given a sequence of plaintext blocks, x_1, x_2, \ldots, x_n , suppose we define the initialization vector IV to be x_1 . Then encrypt the sequence x_2, \ldots, x_n using key K in CFB mode, obtaining the ciphertext sequence y_1, \ldots, y_{n-1} (note that there are only n-1 ciphertext blocks). Finally, define the MAC to be $e_K(y_{n-1})$ Prove that this MAC is identical to the MAC produced in Section 4.4.2 using CBC mode.
- 3. Assume that a sequence of plaintext blocks of length 128 bits have been encrypted using the AES block cipher in CBC mode.
 - a) How many blocks need to be encrypted so that the probability of finding two equal ciphertext blocks becomes larger than 0.5?
 - b) If two equal ciphertext blocks are detected, what can be said about the corresponding plaintext blocks?
- 4. (Stinson 5.10) Suppose that n = pq where p and q are distinct odd primes and $ab \equiv 1 \pmod{(p-1)(q-1)}$. The RSA encryption operation is $e(x) = x^b \mod n$ and the decryption operation is $d(y) = y^a \mod n$. We proved that d(e(x)) = x if $x \in \mathbb{Z}_n^*$. Prove that the same statement is true for any $x \in \mathbb{Z}_n$.
- 5. Bob is using RSA cryptosystem and his modulus is $n = pq = 29 \times 2003 = 58087$. Bob chooses an odd integer for his public encryption exponent b. Prove that if the plaintext is 2002 then the ciphertext is equal to 2002.