T-79.503 Basics of Cryptology Homework 7 October 29, 2003

1. Consider Galois field $\mathbb{F} = GF(2^8)$ with polynomial $m(x) = x^8 + x^4 + x^3 + x + 1$. The elements of \mathbb{F} are given as octets using hexadecimal notation. Suppose that two polynomials c(x) and d(x) with coefficients in \mathbb{F} are given as follows:

> $c(x) = '03'x^3 + '01'x^2 + '01'x + '02'$ $d(x) = '0B'x^3 + '0D'x^2 + '09'x + '0E'$

Show that $c(x)d(x) = 01' \pmod{x^4 + 01'}$. The polynomial c(x) defines the MixColumn transformation in Rijndael and d(x) defines its inverse transformation.

- 2. Suppose that \mathbf{X}_1 and \mathbf{X}_2 are independent random variables defined on the set $\{0, 1\}$. Let ϵ_i denote the bias of \mathbf{X}_i , $\epsilon_i = Pr[\mathbf{X}_i = 0] - \frac{1}{2}$, for i = 1, 2. Prove that if the random variables \mathbf{X}_1 and $\mathbf{X}_1 \oplus \mathbf{X}_2$ are independent, then $\epsilon_2 = 0$ or $\epsilon_1 = \pm \frac{1}{2}$.
- 3. Consider the finite field $GF(2^3)$ with polynomial x^3+x+1 and inversion function $z \mapsto z^{-1}$ in $GF(2^3)$ (see Stinson 6.4 and last week's homework problem 5). Compute the linear approximation table (values $N_L(a', b')$)for this substitution transformation.
- 4. Consider the example linear attack in Stinson, section 3.3.3. In S_2^2 replace the random variable \mathbf{T}_2 by $\mathbf{U}_6^2 \oplus \mathbf{V}_8^2$. Then in the third round the random variable \mathbf{T}_3 is not needed. What is the final random variable in formula (3.3) (page 87) and what is its bias?
- 5. Consider the Galois field $GF(2^n)$. Prove that the mapping $z \mapsto z^3$ is almost perfect nonlinear, that is, the values $N_D(a', b')$ in the difference distribution table of the S-box defined by this mapping are equal to 0 or 2.