1. Consider Galois field $\mathbb{F}=G F\left(2^{8}\right)$ with polynomial $m(x)=x^{8}+x^{4}+x^{3}+x+1$. The elements of \mathbb{F} are given as octets using hexadecimal notation. Suppose that two polynomials $c(x)$ and $d(x)$ with coefficients in \mathbb{F} are given as follows:

$$
\begin{aligned}
& c(x)={ }^{\prime} 03^{\prime} x^{3}+^{\prime} 01^{\prime} x^{2}+^{\prime} 01^{\prime} x+^{\prime} 02^{\prime} \\
& d(x)={ }^{\prime} 0 B^{\prime} x^{3}+^{\prime} 0 D^{\prime} x^{2}+^{\prime} 09^{\prime} x+^{\prime} 0 E^{\prime}
\end{aligned}
$$

Show that $c(x) d(x)=01^{\prime}\left(\bmod x^{4}+^{\prime} 01^{\prime}\right)$. The polynomial $c(x)$ defines the MixColumn transformation in Rijndael and $d(x)$ defines its inverse transformation.
2. Suppose that \mathbf{X}_{1} and \mathbf{X}_{2} are independent random variables defined on the set $\{0,1\}$. Let ϵ_{i} denote the bias of $\mathbf{X}_{i}, \epsilon_{i}=\operatorname{Pr}\left[\mathbf{X}_{i}=0\right]-\frac{1}{2}$, for $i=1,2$. Prove that if the random variables \mathbf{X}_{1} and $\mathbf{X}_{1} \oplus \mathbf{X}_{2}$ are independent, then $\epsilon_{2}=0$ or $\epsilon_{1}= \pm \frac{1}{2}$.
3. Consider the finite field $G F\left(2^{3}\right)$ with polynomial $x^{3}+x+1$ and inversion function $z \mapsto$ z^{-1} in $G F\left(2^{3}\right)$ (see Stinson 6.4 and last week's homework problem 5). Compute the linear approximation table (values $N_{L}\left(a^{\prime}, b^{\prime}\right)$)for this substitution transformation.
4. Consider the example linear attack in Stinson, section 3.3.3. In S_{2}^{2} replace the random variable \mathbf{T}_{2} by $\mathbf{U}_{6}^{2} \oplus \mathbf{V}_{8}^{2}$. Then in the third round the random variable $\mathbf{T}_{\mathbf{3}}$ is not needed. What is the final random variable in formula (3.3) (page 87) and what is its bias?
5. Consider the Galois field $G F\left(2^{n}\right)$. Prove that the mapping $z \mapsto z^{3}$ is almost perfect nonlinear, that is, the values $N_{D}\left(a^{\prime}, b^{\prime}\right)$ in the difference distribution table of the S-box defined by this mapping are equal to 0 or 2 .

